
PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
Long-time nonpreaveraged diffusivity and sedimentation velocity of clusters:
Applications to micellar solutions

Venkat Ganesan and Howard Brenner
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307

~Received 27 July 1998!

Calculations are presented for the long-time diffusivity and sedimentation velocity ofassociating colloids.
Examples of the latter are micellar solutions and microemulsions. The analysis incorporates the role of revers-
ible association-dissociation processes accompanying the physical-space transport of these clusters through the
solution. This is accomplished without the need for preaveraging by transforming the association-dissociation
processes into equivalent ‘‘size-space’’ diffusional processes, which are then embedded into the simultaneous
physical-space transport processes occurring in three-dimensional space so as to obtain a four-dimensional
convective-diffusion equation governing transport of the clusters in both the physical and size spaces. A
generic ‘‘projection’’ scheme framework based on generalized Taylor dispersion theory is then applied to the
problem, thereby reducing the four-dimensional transport equation to a coarse-grained three-dimensional
physical-spaceconvective-diffusion equation. Effects arising from the existence of a distribution of cluster
sizes are accounted for in the latter formulation governing themeantransport process by the appearance of
three coarse-grained phenomenological coefficients whose values dependinter alia upon the cluster-size dis-
tribution. These ‘‘macrotransport’’ coefficients include a mean sedimentation velocity vector arising from the
action of external forces~if any!, a mean molecular diffusivity dyadic, and an additional diffusive-type con-
tribution to the diffusivity corresponding to a convective~‘‘Taylor’’ ! dispersivity. The latter contribution arises
as a consequence of the spread in settling velocities of the differently sized clusters. The generic framework
developed is illustrated by applications to two classes of micellar solutions:~i! solutions comprised of spherical
micelles; ~ii ! solutions comprised of cylindrical or wormlike micelles~so-called ‘‘living polymers’’!. Each
spherical micelle is modeled as an impenetrable rigid sphere, the radius of which is determined by its aggre-
gation number. The living polymers are modeled by the Debye-Bueche theory, wherein a coiled macromo-
lecular chain is regarded as a Brownian ‘‘spongelike’’ porous sphere through whose interior solvent percolates.
Calculations of the resulting macrotransport coefficients, including their scaling relationships, are presented for
both cases, and their physical significance discussed in terms of the underlying microscale physics. Possible
applications and potential extensions of the generic framework are outlined.
@S1063-651X~99!09302-2#

PACS number~s!: 82.70.2y, 36.40.Sx, 05.40.2a
tio
e
ol
t
in
n
g

th
ib
-
le

r-
b
s
is
th
d
th
s

en-
ur
t of
ter

us
,
lute
on

as
rous
ion
e
ize

sla-
ch
he
ris-
ze
op-
ns-
ster
I. INTRODUCTION

The present work studies the diffusion and sedimenta
of size-fluctuating Brownian ‘‘clusters’’ through otherwis
quiescent, unbounded fluid continua. These Brownian s
tions are assumed to be sufficiently dilute with regard
cluster concentration such that individual clusters do not
teract hydrodynamically or physicochemically with one a
other. Clusters are envisioned as being composed of ag
gates of solute molecules, i.e., ‘‘monomers’’~cf. @1# for a
general discussion of systems comprising examples of
category!. Each cluster is assumed to undergo a revers
association-dissociation (A-D) process, leading to a continu
ous temporal variation in the number of monomer molecu
instantaneously constituting the aggregate.~In the following,
the terms ‘‘size’’ and ‘‘aggregation number’’ are used inte
changeably except where a need arises to distinguish
tween them.! A situation of dynamical equilibrium as regard
the cluster-size distribution is ultimately expected to ar
locally at each point of the fluid as a consequence of
inherently reversible nature of theseA-D processes couple
with the relative rapidity of their kinetics compared wi
physical-space cluster transport rates. Because of this, it
PRE 591063-651X/99/59~2!/2126~15!/$15.00
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fices to focus attention on the transport of a single repres
tative cluster, hereafter termed a ‘‘tracer.’’ The focus of o
analysis is to quantify during such a scenario the transpor
such a tracer cluster through the fluid continuum. The clus
is assumed to undergo both physical-space diffusion~due to
thermal fluctuations! and sedimentation~due to external
forces, if any!, simultaneously accompanied by a continuo
variation in its size due to theA-D processes. Of course
sedimentation will be absent in the case of force-free so
molecules, in which circumstances only molecular diffusi
of the cluster occurs.

The feature of this problem that, to our knowledge, h
not previously been addressed in a systematic and rigo
manner is the effect of the short-time cluster-size variat
~due to theA-D processes! on the long-time physical-spac
transport processes. This temporal variation in cluster s
manifests itself via an instantaneous size-specific tran
tional diffusion coefficient and sedimentation velocity, ea
of which varies continuously during the movement of t
cluster through the solution owing to changes in its size a
ing from theA-D processes. This temporal variation in si
has a nontrivial effect on the physical-space transport pr
erties of such dispersions. Most prior studies of cluster tra
port processes have been limited to evaluating the clu
2126 ©1999 The American Physical Society
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mobility for the preaveragedcase, where the cluster size
assumed to remain fixed at its equilibrium mean value dur
its entire motion through the solvent~see, for example,@2#!.
In contrast, we treat here the nonpreaveraged case, wher
cluster is allowed to undergo relatively rapid fluctuations
its size due to theA-D processes as it wends its way throu
the solution.

Practical motivations for studying cluster transport p
cesses are manifold. Association colloids are ubiquitous
nature, micellar dispersions and microemulsions@3,4# repre-
senting common examples. Equilibrium aspects of these
lutions have been widely studied, including elucidating t
many size and shape distributions thermodynamically p
sible in such systems. In contrast, the transport or none
librium properties of these entities have received only spa
attention. In this context it is pertinent to note the emerge
of recent interest in quantifying the rheology of clusteri
systems, exemplifying the more general class of so-ca
soft glassy systems@5,6#. The same features that lead to i
triguing thermodynamics@3# ~namely, equilibrium size and
shape distribution features! make the analysis of transpo
properties equally interesting, albeit more complex. In t
initial foray into the field we do not address larger issu
relating to the rheology of these systems when they unde
shear. Rather, we study only those more limited features
companying the transport of clusters through otherwise q
escent systems in which shear is absent.

Owing to the polydispersivity of cluster sizes, transp
processes occurring in these systems exhibit interesting
tributes not present in monodisperse systems. Explicitly,
will quantify both the diffusivity and sedimentation~i.e., mo-
bility ! coefficient in dilute clustering systems. The diffusio
coefficient is shown to involve an additional contributio
~termed the ‘‘convective’’ or ‘‘Taylor’’ dispersivity! above
and beyond the ordinary molecular contribution, whi
arises from the distribution of settling velocities among t
differently sized clusters. Furthermore, our analysis indica
that the size-fluctuation processes accompanying themicro-
scalephysical-space cluster transport processes may ha
significant effect upon themacroscalephysical-space trans
port coefficients. On the practical side we note that s
diffusion coefficients are widely used to characterize su
features as size, shape, and cluster-cluster interaction
these systems@7–9#. As such, our analysis points up
scheme whereby key phenomena arising in these poly
perse systems can be accounted for when interpreting ex
mental self-diffusion and electrophoretic measurements
such clustering systems.

A modest prior literature examines several eleme
closely related to our study. Notably, Cussler@10# considered
cluster diffusion in solutions near the consolute point, wh
very large sizes of the diffusing units~‘‘clusters’’!—
certainly bigger than the underlying monomeric molecu
units—are to be expected. Frankel, Mancini, and Bren
@11# investigated a system similar in spirit to ours, relating
diffusion and sedimentation coefficients in solutions
coiled linear polymer molecules, and arising from Browni
size fluctuations stemming from the inherently flexible n
ture of such entities. Our goal here is the development o
generic conceptual framework for quantifying the transp
of dispersions of association colloids, with the accompa
g
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ing association-dissociation process viewed as diffusio
processes in ‘‘size’’ or ‘‘aggregation number’’ space~cf.
also Ziabicki@12#!. Other continuum approaches have be
proposed for quantifying the cluster-size distributions—s
e.g.,@13#. Our analysis draws heavily upon generalized Ta
lor dispersion theory@14#.

The scheme ultimately developed will be illustrated
applications to two distinct, but interrelated examples of m
cellar cluster geometries. The first involves a micellar so
tion composed of spherical micelles, for which the size d
tribution encountered in practice is typically confined to
relatively narrow range centered about the mean aggrega
number@4#. In the second case we consider similar pheno
ena for cylindrical micelles, frequently termed ‘‘living poly
mers.’’ The latter exhibit a wide range of cluster sizes, ran
ing from monomeric to polymeric, the latter involving ver
large aggregation numbers. Pioneering studies of these
tems appear in the works of Cates@15,16#, Bouchaud
@17,18#, and others, who investigated the dynamics of th
systems in the entangled-regime domain. Our analysis
focus on the diffusive and sedimentary aspects of these
tems, albeit in the dilute regime.

In the dilute cluster solution limit it suffices to focus a
tention on the transport of a single cluster. In the subsequ
analysis, hydrodynamic as well as physicochemical int
cluster interactions are neglected, permitting attention to
focused exclusively on the effect of the internalA-D pro-
cesses. Furthermore, owing to the dilute nature of the dis
sion, only pairwiseA-D reactions need to be considere
These assumptions, which hold in the dilute solution lim
ensure that the effective transport properties of the solu
can be discerned by employing a tracer cluster to sample
configurational space~size- plus physical-space coordinate!
of the clusters present in the solution. An exact microsc
description of the transport process would require calcula
the multivariate probability density functionP(R,n,t) of the
tracer cluster, defined in the four-dimensional configuratio
space described at timet by the three scalar physical coord
nates parametrizing the instantaneous position vectorR ~of
say, the center of mass! of the cluster in physical space, an
the cluster aggregation numbern. In most cases, however
physical interest does not center on the detailed micros
description provided byP(R,n,t) but rather on a coarse

grained macroscale probability densityP̄(R,t) characteriz-
ing the totality of the molecular solute species being tra
ported, irrespective of the size of the cluster in which t
monomer molecule characterizing the chemical species
ing transported finds itself at any given instant of time. T

less detailed density distributionP̄(R,t) quantifies the solute
species transport process through three-dimensional phy
space~i.e., through the solution!, accounting for variations
occurring in cluster size in an appropriately averaged man
that eschews preaveraging.

This coarse-grained density is expected to evolve asy
totically according to the macroscale, i.e., physical-sp
convective-diffusive conservation equation@14#

] P̄

]t
1Ū•“ P̄5D̄:¹¹ P̄, ~1!

wherein the time- and position-independent sedimenta
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2128 PRE 59VENKAT GANESAN AND HOWARD BRENNER
vector velocity Ū and dispersion dyadicD̄, respectively,
quantify the coarse-grained convective and diffusive so
transport mechanisms in the fluid continuum. Implicitly em
bedded within these coefficients are the overall effects of
comparable microscale transport processes arising from
continuous variations in cluster size. For a monodisperse
tem ~of aggregation numbern̄! these coefficients are, respe
tively, identical to the Stokes settling velocityU[U(n̄) and
molecular diffusivityD[D(n̄) appropriate to clusters of siz
n̄. Our objective is, starting from the specified microsc

transport data, to calculate the coefficientsŪ andD̄ govern-
ing the macroscale transport processes for circumsta
where a distribution of cluster sizes exists owing to theA-D
processes.

II. FORMULATION

As indicated in the Introduction, attention is directed t
wards the transport of a single cluster undergoing fluct
tions in size due to the reversibleA-D processes. Conforma
tional changes inshape, though potentially interesting, ar
not considered in this work. A variety of schemes can
imagined for theA-D processes accompanying the physic
space transport. However, many such processes lead to
tion schemes that can be represented physically as size-s
diffusional processes, with an internal force-derived poten
energy function restricting the cluster size range. Our an
sis will, in general, focus only upon those reaction schem
for which such adiffusion equationrepresentation is consis
tent with the underlying physics@12#.

The starting point for our analysis is the four-dimension
microscale conservation equation governing both s
specific spatial~R! and position-specific aggregational~n!
transport of the tracer cluster through the unbounded flu

]P

]t
1“•J5 j n2 j n21 , ~2!

where P[P(R,n,tuR8,n0)[P(R2R8,n,tun0) represents
the complete microscale conditional probability dens
~Green’s function! signifying the probability that at a timet
the tracer cluster is of aggregation numbern and is located at
positionR, given that at timet50 the cluster was centered
position R8 and was of sizen0 @19#. The operator¹
[(]/]R)n,t denotes the size-specific physical-space grad
operator. The physical- and size-space fluxes of the proba
ity density P, are denoted respectively byJ and j. In situa-
tions wherein a large range of aggregation numbers are
sible~such as will be assumed of all the examples conside
in this paper!, it is permissible to replace the above discre
‘‘diffusion equation’’ ~2! by a version involving a continu
ously varying indexn:

]P

]t
1“•J1

] j

]n
50, ~3!

whereinj [ j (R,n,tun0) now represents the size-space flux
continuous function ofn, and ]/]n[(]/]n)R,t denotes the
position-specific size-space gradient operator.
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The fluxesJ and j, can be expected constitutively@14# to
possess conventional convective and diffusive contributi
as follows:

J5M ~n!F~n!P2D~n!¹P, ~4!

j 5m~n! f ~n!P2d~n!
]P

]n
, ~5!

wherein M (n) denotes the physical-space cluster mobil
coefficient, andF(n) the external vector force exerted on th
cluster as a whole. Their respective counterparts in size sp
are denoted bym(n) and f (n). Diffusivities in physical and
size space, respectively, denoted byD(n) andd(n), are re-
lated to the respective hydrodynamic mobility coefficien
through configuration-specific Stokes-Einstein relations@20#:

D~n!5kBTM~n!, d~n!5kBTm~n!, ~6!

with kB the Boltzmann constant. For the reversible react
schemes subsequently considered, the scalar forcef (n) can
always be written as the negative size-space gradient
potential energy functionV(n) ~see Appendices A and B!.
Use of this information together with Eq.~6! permits Eq.~5!
to be rewritten as

j 52d~n!exp@2V~n!/kBT#
]

]n
$P exp@V~n!/kBT!#%.

~7!

The above microscale data are to be supplemented
respective physical- and size-space boundary conditions.
former is embodied in the generic requirement that all
algebraic moments of the distribution functionP converge,
namely,@21#

uR2R8umP→0 ~m50,1,2, . . . ! as uR2R8u→`,
~8!

and the latter as

j 50 for n51,̀ . ~9!

In addition, we have for the initial condition that

P5 H d~R2R8!d~n2n0! ~ t50!,
0 ~ t,0!, ~10!

with d the Dirac d function, andn0 the initial size of the
cluster at timet50. Satisfaction of Eq.~8! assures the con
vergence of the various momental integrals arising in
general theory@14#. It is also readily verified from the abov
system of equations that the solutionP satisfies the normal-
ization condition

E
R`

E
1

`

P~R2R8,n,tun0!dn d3R51 ~ t.0! ;~n0 ,R8!.

~11!

In the above,d3R denotes a volume element in thre
dimensional physical space anddn the comparable-size
space incremental element. Size space is assumed to e
from the basic monomer unit (n51) to clusters of sizen
5`. Note that we have used the Euler-Maclaurin sum f
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mula to replace the sum over the discrete indexn by a com-
parable integration over the continuous indexn. Equation
~11! shows that the total probability of finding the trac
somewhere in physical space,R` :$2`,xi,`; i 51,2,3%,
and contained within a cluster of some sizen:$1<n,`% is
conserved at each instant.

As stated in the Introduction, physical interest genera
centers not on the four-dimensional microscale distribut
P, but rather only on the coarse-scale macroscopic descr

P̄ of the transport processes occurring in three-dimensio
physical space, as embodied in the macroscale conditi
density:

P̄~R2R8,tun0! 5
def.E

1

`

P~R2R8,n,tun0!dn. ~12!

It is an immediate consequence of Eqs.~11! and ~12! that
this coarse-grained probability is conserved in physi
space:

E
R`

P̄~R2R8,tun0!d3R51 ~ t.0! ;~n0 ,R8!.

~13!

Asymptotically, for sufficiently long times~see below!, P̄ is
independent of the initial cluster sizen0 @14#, and hence is

functionally of the formP̄(R2R8,t).
The initial- and boundary-value problem posed by t

system of microscale equations~3!–~11! possesses the sam
physicomathematical structure as that of the generic prob
of generalized Taylor dispersion theory@14#. This equiva-
lence is established when one identifies the size~n! and
physical-space position~R! with the respective ‘‘local’’~q!
and ‘‘global’’ ~Q! coordinates of the latter theory. Genera
ized Taylor dispersion theory shows that, for long tim
namely,id(n)i t/n̄2@1 ~with id(n)i denoting some norm o
the size-space diffusivity, andn̄ denoting the mean aggrega
tion number!, the asymptotic solutionP of Eq. ~3! satisfying
Eqs. ~4!–~11! matches momentwise the comparable dom

nant long-time asymptotic solution ofP̄, whose transport
through physical space is governed by Eq.~1! together with
the respective boundary and initial conditions

uR2R8umP̄→0 ~m50,1,2, . . . ! as uR2R8u→`
~14!

and

P̄5 H d~R2R8! ~ t50!,
0 ~ t,0!. ~15!

Furthermore, by virtue of having matched the respective m

ments of P̄ and P, the theory also provides an explic

scheme for determining the macrotransport coefficientsŪ

andD̄ via appropriate quadratures of the specified microsc
phenomenological data@data explicitly embodied in the mi
croscale transport coefficients, and implicitly appearing
Eqs.~3!–~5!# over the cluster-size domain.

Implementation of the theory@14# requires, inter alia,
knowledge of the solution of a steady-state scalar fi
y
n
tor

al
al

l

m

,

-

-

le

n

d

P0
`(n), the latter corresponding to the steady, long-time lim

of the unsteady-state conditional probability density,

P0~n,tun0! 5
def.E

R`

P~R2R8,n,tun0!d3R,

that the cluster possesses a sizen at timet irrespective of its
physical-space locationR. The field P0

`(n) satisfies the
steady-state differential equation

d j0
`

dn
50, ~16!

with

j 0
`~n! 5

def.

2d exp~2V/kBT!
d

dn
@P0

` exp~V/kBT!#, ~17!

in which the latter flux density satisfies the boundary con
tions

j 0
`50 at n51,̀ ~18!

together with the normalization condition

E
1

`

P0
` dn51. ~19!

The solution of Eqs.~16!–~19! is

P0
`~n!5H E

1

`

exp@2V~n!/kBT#dnJ 21

exp@2V~n!/kBT#.

~20!

The macrotransport coefficientsŪ andD̄ appearing in Eq.
~1! are expressed in terms of respective quadratures

P0
`(n) @14#. In this manner the average settling velocityŪ of

the cluster is given by

Ū5ŪF̂, ~21!

where

Ū[^U~n!& 5
def.E

1

`

dn P0
`~n!U~n!, ~22!

in which

U~n!5M ~n!F~n! ~23!

is the settling velocity of an aggregate of sizen, and F̂
5F/F(n) represents a unit vector in the spatial directi
parallel to the applied forceF, in which F(n)5uF(n)u.

The dispersivity dyadic is represented by the sum@14#

D̄5D̄MI1D̄CF̂F̂, ~24!

wherein



th

is
u
ce
e

e-
n

i

fo

tia
b

suf-
for
ing
n-

ce
rat-
ct

ach
for

diffu-

e
ap-
nts

f-

r

es

n
of

al-
aw
dius
he
can

re-

e

2130 PRE 59VENKAT GANESAN AND HOWARD BRENNER
D̄M[^DM~n!& 5
def.E

1

`

dn P0
`~n!D~n!

[kBTE
1

`

dn P0
`~n!M ~n! ~25!

is the average physical-space molecular diffusivity of
cluster, and

D̄C5E
1

`

dn P0
`~n!B~n!@U~n!2Ū# ~26!

represents the Taylor or convective contribution to the d
persivity. The latter contribution stems from the continuo
variation in settling velocity arising from the size-spa
transport processes~i.e., due to continuous changes in th
size of the cluster as it traverses the fluid!.

Appearing in the latter integral is yet another tim
independent scalar field,B(n), which represents the solutio
of the differential equation~14!

j 0
`~n!

dB

dn
2

d

dn FP0
`d~n!

dB

dnG5P0
`~n!@U~n!2Ū#,

~27!

subject to the boundary conditions

dB

dn
50 at n51,̀ . ~28!

The solution of Eqs.~27! and ~28! can easily be obtained
from the knowledge of the fieldP0

` given by Eq.~20!, yield-
ing

B~n!5b02E
1

n

dn8
exp@V~n8!/kBT#

d~n8!

3E
1

n8
dñ@U~ ñ!2Ū#exp@2V~ ñ!/kBT#, ~29!

whereb0 is an integration constant whose numerical value

irrelevant in establishingD̄C via Eq.~26!. Substitution of Eq.

~29! into Eq. ~26! yields the following expression forD̄C:

D̄C5H E
1

`

dn exp@2V~n!/kBT#J 21

3E
1

`

dn9
exp@V~n9!/kBT#

d~n9!

3H E
1

n9
dn8@U~n8!2Ū#exp@2V~n8!/kBT#J 2

.

~30!

Explicit calculation ofŪ, D̄M, andD̄C from the preced-
ing formulas requires specifying constitutive equations
both the size- and physical-space mobility coefficients,m(n)
and M (n), respectively, as well as the size-space poten
V(n). As already indicated, a variety of schemes can
e

-
s

s

r

l
e

imagined for constitutively quantifying theA-D size-space
transport processes. However, the above formulation is
ficiently general to provide robust generic prescriptions
determining the three macrotransport coefficients pend
explicit specification of the requisite constitutive relatio
ships.

An outline of the rest of the paper is as follows: To pla
the preceding concepts on a firmer basis while also illust
ing the significance of size variation effects, two distin
A-D schemes will be considered. Appendices A and B e
outline respective schemes whereby the master equation
the size-space transport processes can be recast into a
sion equation format, thereby identifying bothd(n) and
V(n). Subsequently, in Secs. III and IV we revert to th
generic quadrature formula developed in Sec. II, using
propriate models for the physical-space transport coefficie
M (n) @and henceD(n)# to obtain the macrotransport coe

ficients Ū and D̄. Section V concludes with an outlook fo
future research directions.

III. MACROTRANSPORT COEFFICIENTS
FOR SPHERICAL MICELLAR SOLUTIONS

Identification of the size-space mobility coefficientm(n)
and the potential energy driving forceV(n) for the spherical
micelle case is effected in Appendix A. The latter identifi
the potential in terms of the mean aggregation numbern̄ and
spreads in the chemical potential distribution. Calculatio
of the macrotransport coefficients requires specification
the physical-space mobility coefficientM (n) and force
F(n). For the present spherical micellar case the physic
space mobility coefficient can be obtained from Stokes l
by modeling the cluster as an impermeable sphere of ra
r. The corresponding mobility then scales inversely with t
radius of the sphere. The radius of the spherical micelle
itself be related to the aggregation number as

r ~n!}n1/3, ~31!

whence the mobility obeys the relationship

M ~n!

M ~ n̄!
5

n21/3

n̄21/3
. ~32!

Furthermore, using the fact that the forceF(n) on a cluster
scales withn, we have that

U~n!

U~ n̄!
5

n2/3

n̄2/3
. ~33!

This serves to identify the physical-space coefficients p

requisite to calculating the macrotransport coefficientsŪ,D̄
via Eqs.~21!–~25! and Eq.~30!. The remaining size-spac
coefficients are identified in Appendix A@cf. Eqs.~A14! and
~A15!#.

Use of the preceding identifications in Eq.~20! yields

P0
`~n!5H E

1

`

dn expF2
~n2n̄!2

2s2 G J 21

expF2
~n2n̄!2

2s2 G .

~34!
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The fact that the lower limit of integration in the normalizin
weight function is cut off atn51 rather thann50 results in
analytic expressions that are quite cumbersome. Howe
the computed values do not depend crucially on the lo
limit used in evaluating the above integrals so long as
mean aggregation number is sufficiently large and the dis
butional spread small compared with the mean aggrega
number. This represents the situation typically encounte
for spherical micellar solutions@4#. In such circumstances i
is possible to replace the lower integration limit byn50
without significant error. The resulting expressions for t
macrotransport coefficients obtained from Eqs.~21!–~25!
and Eq.~30! can then be generically expressed in terms o
scaling function as

c5n̄n f ~ s̃ !, ~35!

wherein c represents a generic macrotransport coeffici
and f denotes a scaling function that exhibits the followi
behavior:

f ~x!→ H1 ~x→0!,
xa ~x@1!,

in which the exponentsa and n @22# depend upon the spe
cific transport coefficient being considered. Also appear
in Eq. ~35! is the weighted distributional spread:

s̃ 5
def. s

n̄1/2
. ~36!

When the lower limit in Eq.~34! cannot be replaced b
zero, such as occurs when the spread satisfies the inequ
s̃.1, the above scaling arguments do not hold and the
sulting transport coefficients depend nontrivially on the me
aggregation numbern̄. Despite the fact that some of th
assumptions underlying the analysis do not remain rig
ously valid in such circumstances@cf. the discussion preced
ing Eq.~A15!# we have nevertheless also studied such ca

The analytic quadratures obtained by substituting E
~32!–~34! into Eqs.~21!–~25! for the n50 case can be ex
pressed in terms of parabolic cylinder functions, who
asymptotic expansions are well documented@23#. In the fol-
lowing discussion, however, owing to their algebraic co
plexity we do not present explicit analytic expressions for
resulting macrotransport coefficients, as such formulas
not very illuminating in and of themselves. Instead, we in
cate qualitative features~obtained numerically! describing
the functional dependence of the macrotransport coeffici
upon the spread in cluster sizes. All of the resulting featu
are graphically indicated in terms of the scaling variables̃.
Even in those cases wherein replacement of the lower i
gration limit by zero does not strictly hold, we found that t
qualitative features displayed in the subsequent plots are
significantly altered. Accordingly, we have restricted ou
selves in what follows primarily to studying the effect of th
scaled variables̃ upon the three macrotransport coefficien

Mean velocity of settling.Figure 1 depicts the effect of th
size-distribution spread upon the ratio of the mean clu

settling velocity Ū to that of the settling velocityU(n̄)
[M (n̄)F(n̄) at the mean aggregation number. Initially, f
r,
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small departures from monodispersivity, this ratio decrea
below unity, followed by a steep rise thereafter. The physi
explanation of this behavior is straightforward: As alrea
noted, the settling velocity scales asn2/3. For small values of
the spreads̃, the smaller values ofn are sampled more fre
quently than are the larger values~cf. @24# for a simple
proof!. This leads to a reduction in the mean settling veloc
below that which would have occurred had the tracer s
simply coincided with the mean aggregation number. Ho
ever, at the larger values ofs̃ the lower limit is cut off at
n51, whereas no such constraint exists for the upper lim
Thus, when the chemical potentials are such that a la
spread in the distribution occurs, the mean settling veloc
will generally far exceed the settling velocity occurring at t
mean aggregation number. Furthermore, from the compu
values it can be discerned that the scaling function in
above exhibits exponentsn5 1

3 and a; 2
3 ~cf. @25# for a

simple proof of the value of the latter exponenta!.
Mean diffusivity.Polydispersivity effects on the norma

ized mean molecular diffusivity,D̄M/DM(n̄) are portrayed in
Fig. 2. Since the microscale diffusivityD(n) scales asn21/3

the observed variation is consistent with the expected in
rise deriving from the preferential sampling of the smal
aggregation numbers, followed by a manifestation of the
fect of the cut off at the lower aggregation number lim
Scaling exponents for this case were determined from
plots to ben52 1

3 anda520.4.
Convective dispersivity.Figure 3 depicts the effect o

varying the size distribution on the convective dispersivi
indicating a monotonic increase with increasing depart
from monodispersivity. No counterpart of this Taylor dispe
sion phenomenon arises during either the diffusion or se
mentation ofmonodisperseclusters. The qualitative trend
depicted in Fig. 3 are completely consistent with the fluctu

tional origins ofD̄C.
Significance of results.The above plots display the re

spective variations in the three macrotransport coefficie
caused by the size-induced spread in chemical poten
Each manifests polydispersivity effects resulting from t

FIG. 1. Effect of polydispersivitys̃ on the mean settling veloc

ity ratio Ū/U(n̄) for spherical micellar solutions.
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2132 PRE 59VENKAT GANESAN AND HOWARD BRENNER
reversibleA-D processes, wherein the cluster-size grow
mechanism occurs by stepwise association processes
practical situations involving spherical micellar solutions t
above effects are unlikely to prove very significant owing
the relatively low polydispersivity indices typically encou
tered in such systems. Nevertheless, our analysis prov
rigorous estimates of the magnitudes of such effects. A p
haps unexpected feature of this example is the existence
convective or Taylor contribution to the diffusional proces
a phenomenon that has no counterpart in monodisperse
cellar solutions.

It might appear that the above features with respec
both the mean molecular diffusivity and mean settling vel
ity could be subsumed under the choice of an appropria
defined mean aggregation number. For instance, one m

FIG. 2. Effect of the polydispersivitys̃ on the normalized mean

molecular diffusivityD̄M/D(n̄) for spherical micellar solutions.

FIG. 3. Dependence of the normalized convective dispersi

D̄C/@ n̄U(n̄)#2 on the degree of polydispersivitys̃ for spherical mi-
cellar solutions.
h
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propose to define a mean aggregation number,ñ, say, based
upon the observed settling velocity:

Ū

U~ n̄!
5

ñ2/3

n̄2/3
. ~37!

This choice would, however, imply that

D̄M

D~ n̄!
Þ

ñ21/3

n̄21/3
, ~38!

an apparent violation of the Stokes-Einstein equation ow
to the fact that

Ū5^M ~n!F~n!&Þ^M ~n!&^F~n!&. ~39!

If, alternatively, one chose to define a mean mobility coe
cient such that

^M̃ ~n!& 5
def. Ū

^F~n!&
, ~40!

then

D̄M5kBT^M ~n!&ÞkBT^M̃ ~n!&. ~41!

The latter serves to quantify the apparent violation of
Stokes-Einstein relationship. Figure 4 displays the ra

^M̃ (n)&/^M (n)& obtained for differents̃.
Illustrated in this section were several effects arising fro

the spread in cluster sizes about a mean aggregation num
Specifically, the spherical micellar solution case was mo
vated by the availability of the constitutive equations for t
microscale size- and physical-space transport coefficie
The next section quantifies similar behavior for another i
portant case, wherein the cluster size distribution exhib
novel features not present in the spherical micellar case.

y

FIG. 4. Dependence of the mobility ratiôM̃ (n)&/^M (n)& on

the polydispersivity parameters̃ for spherical micellar solutions.
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IV. MACROTRANSPORT COEFFICIENTS
FOR WORMLIKE MICELLAR SOLUTIONS

Results are presented in this section for the macrotra
port coefficients arising in situations for which the aggreg
tion processes are represented by Eq.~B1!. Derivation of the
required size-space diffusion equation is effected in App
dix B, wherein we identify the size-space transport coe
cients in Eqs.~B8! and ~B16!. Interesting features of this
example, which contrast with the preceding spherical mic
lar case are~i! dependence of the mean aggregation num
on micellar concentration; and~ii ! the unique form of the
potential energy function governing the size distribution.
in the spherical micellar example, the forceF(n) scales with
n. The mobility coefficientM (n), however, requires a bi
more explanation. This example is analyzed in the spirit
extreme simplicity, omitting complications that necessar
accompany more realistic descriptions of polymer solut
behavior, especially with regard to excluded-volume iss
and the like@26#. Complications accompanying a more ri
orous analysis can easily be accommodated within the g
eral framework outlined in Sec. II.

Since our primary aim is to illustrate macroscopic effe
resulting from fluctuations in the cluster aggregation numb
rather than concentrating on detailed theories of polymer
havior in solutions we instead consider a simplistic model
the mobility of a polymer cluster, namely, the classic
Debye-Bueche porous sphere model@27#. Research on the
dynamics of polymer solutions is often based upon the g
metric representation of polymers as macromolecular ch
possessing an enormous number of degrees of freedom
subsequently employing simplified kinetic models such
‘‘bead-spring’’ or ‘‘bead-rod’’ models as well as extension
thereof~cf. Bird et al. @28#!. In these models, hydrodynam
interactions among beads are either completely neglecte
simplistically accounted for via use of the equilibrium pr
averaged Oseen-Burgers tensor. In contrast, the po
sphere model proposed by Debye-Bueche accounts for
drodynamic interactions by considering the hindered flow
the solvent through a permeable sphere composed of a
ter of resisting beads. Felderhof and Deutch@29# studied the

FIG. 5. Effect of the mean aggregation numbern̄ on the mean

velocity ratioŪ/U(n̄) for wormlike micellar solutions.
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relationship between the Kirkwood-Risemann@30# and
Debye-Bueche theories. They concluded that both theo
possessed an equivalent microscopic status, differing onl
the statistical assumptions underlying their derivation. F
ther details regarding both motivation for and use of t
porous sphere model can be found in Frankel, Mancini,
Brenner@11#, wherein a related example involving size flu
tuations of a porous-sphere, polymer model was studied.
essential scenario studied therein is similar in spirit to
case analyzed here, except that there the size fluctua
resulted from the inherently flexible nature of the polym
molecule undergoing thermal fluctuations, rather than fr
the A-D mechanism as outlined here.

According to the Debye-Bueche theory, the mobility c
efficient of a uniformly homogeneous porous sphere of
dius r and permeabilityK8 moving through a solvent of vis
cosity m is

M ~r !5
1

6pmr F11~ 3
2 !K~12K1/2 tanhK21/2!

12K1/2 tanhK21/2 G , ~42!

where K5K8/r 2 is the dimensionless Darcy permeabilit
The dimensional permeability is known@31# to scale in-
versely with the volume fraction of the chains~i.e., beads!
comprising the porous sphere. In conjunction with the f
that the radius of the sphere scales withn1/2, for an ideal
random walk we obtain

K5ln21/2, ~43!

wherel is a nondimensional proportionality constant. Usi
representative parametric values provided in Deb
Bueche’s article the constantl was estimated to beO(1),
whereupon we adopt the valuel55 in this analysis. Substi-
tution of Eq. ~43! into Eq. ~42! yields the requisite expres
sion for M (n).

The essential framework of the subsequent theory is s
lar to that illustrated in the preceding section. According

FIG. 6. Variation of the settling velocityU(n) with cluster size
n for monodisperse wormlike micellar solutions. Since only t
qualitative features of this behavior are of interest we do not exp
itly display values forU(n) ~a dimensional quantity!.
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2134 PRE 59VENKAT GANESAN AND HOWARD BRENNER
we restrict ourselves in what follows only to the unique fe
tures of the wormlike micelle case, followed by a brief d
cussion of the results obtained. One of the features dis
guishing the present case from the previous one is
concentration dependence of the mean micelle length. W
this feature makes the present case more interesting, it si
taneously imposes certain constraints upon the mean ag
gation number owing to our prior assumption of dilutene
Large mean aggregation numbers would necessarily im
high concentrations, nullifying the assumption of a dilu
system. And at these high concentrations one encounter
gimes wherein concentration effects arising from entang
ment and reptation of polymer chains acquire heightened
nificance. Bouchaud and co-workers@17,18# have observed
several interesting features accompanying diffusion in th
regimes, including evidence for Levy flights~in contrast to
the normal Brownian random walk!. These effects, though
interesting, are beyond the scope of the present work.
thus proceed with this caveat of limitations imposed by
diluteness criterion.

Using Eq.~B16!, P0
`(n) can be obtained from Eq.~20! as

P0
`~n!5F E

1

`

dn exp~2n/n̄!G21

exp~2n/n̄!. ~44!

This expression indicates that at a given value ofn, P0
`(n) is

functionally dependent only upon the mean aggrega
numbern̄. In a manner similar to the scalingansatzmade in
the previous section, all the macrotransport coefficients
be expected to scale asf (n̄), with f (x)→xa for x@1. Re-
sults obtained for the mean settling velocity, mean molecu
diffusivity, and convective dispersivity are discussed belo

Mean velocity of settling.Figure 5 indicates the effect o

cluster polydispersivity on the mean settling velocityŪ. This
mean settling velocity is almost identical to the settling v
locity U(n̄) at the mean aggregation number. The source
this behavior can be comprehended by analyzing the va
tion of the size-specific settling velocityU(n) with aggrega-
tion numbern. Figure 6 qualitatively depicts the settlin

FIG. 7. Effect of mean aggregation numbern̄ on the normalized

molecular diffusivityD̄M/D(n̄) for wormlike micellar solutions.
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velocity for different aggregation numbers. Due to a com
nation of effects resulting from the dependence of the fo
and mobility upon the aggregation number, this velocity
creases with increasing aggregation number. On the o
hand, the probability distribution~44! for the cluster size
indicates an exponential decrease with aggregation num
Thus, larger velocities are sampled only infrequently a
vice versa. Together, these factors nullify one another, res
ing in an almost imperceptible effect of size distributio
upon mean settling velocity.

Mean diffusivity of settling.Figure 7 depicts the effect o
aggregation number on the mean molecular diffusivity.
contrast to the comparable settling velocity case, size eff
here are quite significant. Mean diffusivity values at differe
aggregation numbers~in regimes which are expected to b
classified as dilute! are seen to be greater by a factor
almost 2 to 3 than those arising at the mean aggrega
number. The underlying reason for such behavior reside
the preferential sampling of the low aggregation numb
clusters, which in turn possess larger mobilities~Fig. 8!. At
high aggregation numbers the mean diffusivity appears
reach an asymptotic limit characteristic of the fact that
mobility and probability distribution both fall to zero at larg
n. However, at such large aggregation numbers the trans
coefficients will depend primarily upon entanglement effec
in which circumstances the assumption of a dilute solut
would clearly be invalid.

Convective dispersivity.Figure 9 displays the functiona
dependence of the convective dispersivity upon the m
aggregation number. Such size effects can be expected
much more dramatic for the convective dispersivity ca
than for the other two macrotransport coefficients. As
ready noted, the convective dispersivity arises solely in
sponse to the distribution of micelle sizes. An increase
mean aggregation number leads to a wider spread in the
distribution, exemplifying the exponential distribution~44!
of sizes. Such behavior is consistent with the observed
crease in convective dispersivity with increasing mean
gregation number. Based upon the dispersivity values

FIG. 8. Variation of the mobilityM (n) with size n for mono-
disperse wormlike micellar solutions. Since only qualitative fe
tures of this behavior are of interest we do not explicitly displ
values forM (n) ~a dimensional quantity!.



n

an

o-
fy
.
ls
ffi

-
ly
th
of
ly
de
to
la

s

th
n
ra

iv

ve
lar
s-
ve
port

-
ffi-
ven

for
ys-
m
ses.
mi-

the
er-
ize-
ring

tial

ion

lly
so-
ef-
h a
dis-
wn
an
il-
ere
-

tems
.’’
en-
a-

vit

PRE 59 2135LONG-TIME NONPREAVERAGED DIFFUSIVITY AND . . .
served at large aggregation numbers the scaling exponea

for D̄C/@ n̄U(n̄)#2 is empirically established to be abouta
'0.7.

Mean mobility.As in the spherical micelle case a me
mobility based on mean settling velocity can be defined@cf.
Eq. ~40!#. The variation in the resulting ratio of apparent-t
actual mean mobility is indicated in Fig. 10, again quanti
ing the apparent violation of the Stokes-Einstein relation

Significance of results.The preceding discussion dea
with size distribution effects on the macrotransport coe

cientsŪ, D̄M, andD̄C characterizing the transport of poly
disperse wormlike micelles through the solution. Such po
dispersivity effects appear to be specially pronounced for
mean molecular diffusivity case. Moreover, the presence
Taylor dispersion contribution stems entirely from the po
dispersivity of the micellar system. An order-of-magnitu
estimate for this additional diffusivity contribution serves
quantify its significance in relation to the mean molecu
diffusivity. From Fig. 9 we extract a ‘‘typical’’ value of

D̄C/@ n̄U(n̄)#251000. Consequently,

D̄C

D̄M
;1023n̄3

U~ n̄!2

kBTM~ n̄!
. ~45!

Using approximate scaling relationships, namely,U(n̄)
;n1/2 and M (n̄);n21/2 ~not rigorously true for the porou
sphere model! together with characteristic values ofM (n̄) to
obtain the prefactor, we find that

D̄C

D̄M
;10228n̄4.5g2, ~46!

with g denoting the dimensionless force. This suggests
the extra contribution to the diffusivity becomes significa
only for very long macromolecules subject to large accele
tions ~such as would arise during ultracentrifugation!. De-
spite the relatively small value predicted for the convect

FIG. 9. Dependence of the normalized convective dispersi

D̄C/@ n̄U(n̄)#2 on mean aggregation numbern̄ for wormlike micel-
lar solutions.
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dispersivity under normal sedimentation conditions, we ha
shown that the effect of polydispersivity on the molecu
diffusivity is a nontrivial one, leading to an increase in clu
ter mobility by a factor of almost 3. Furthermore, we ha
evaluated the functional dependence of the macrotrans
coefficients on the mean aggregation numbern̄. In view of
the relationship that exists betweenn̄ and micellar concen-
tration the above result can,inter alia, be considered as rep
resenting the effect of concentration on the transport coe
cients. It is interesting to note that such an effect arises e
in the dilute solution regime.

V. CONCLUSIONS

The preceding analysis furnishes a general framework
analyzing diffusion and sedimentation phenomena in s
tems exhibiting a distribution of cluster sizes stemming fro
the existence of reversible association-dissociation proces
Examples of such systems include micellar solutions and
croemulsions. The generic scheme developed describes
transport of dilute dispersions of clusters through an oth
wise quiescent solvent via the use of coarse-grained, s
independent, physical-space transport coefficients appea
in a convective-diffusion equation governing the local spa
cluster concentration ~probability density!. This was
achieved through use of generalized Taylor dispers
theory.

Our scheme was illustrated by analyzing two practica
motivated examples encountered in dealing with micellar
lutions. In the first case we studied the aforementioned
fects for a solution composed of spherical micelles. In suc
scenario the cluster size is characterized by a Gaussian
tribution about a mean aggregation number. Using kno
information about such solutions we quantified the me
transport coefficients in terms of typical micellar data ava
able in literature. In the second case, similar effects w
studied for cylindrical or wormlike micelles. Due to the re
versible scission processes present in these latter sys
they are widely regarded as models of ‘‘living polymers
Interesting features arising for this case include an expon
tial attenuation of the size distribution with mean aggreg

FIG. 10. Dependence of the mobility ratio^M̃ (n)&/^M (n)& on

mean aggregation numbern̄ for wormlike micellar solutions.
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2136 PRE 59VENKAT GANESAN AND HOWARD BRENNER
tion length. Furthermore, in such systems the mean aggr
tion length depends upon the micellar concentration. Th
for this class of systems the macrotransport coefficients
tained in our work serve to quantify the variation of th
transport coefficients with micellar concentration, at leas
dilute systems.

A number of potential applications arise from the abo
results. Self-diffusion coefficients are often employed to p
vide a measure of mean aggregation numbers in sphe
micellar solutions, at least in circumstances where such
lutions may be regarded as being approximately mono
perse. Our analysis provides a scheme whereby polydis
sivity effects can be incorporated into the interpretation
experimental results so as to furnish estimates of the er
arising from a lack of true monodispersivity. Moreover, o
analysis is sufficiently general to also embrace the effect
micellar shape~such differences being embodied in the co
stitutive forms assumed for the microscale potential and
mobility coefficients! on the macroscale transport coef
cients. This constitutes a possible future application for
termining the mean properties of such micelles in solut
from measurements of their settling~or electrophoretic! ve-
locities and mean self-diffusivities@8#. Furthermore, the fac
that our generic analysis is not restricted exclusively to
cellar applications permits possible extensions towa
studying the effects of ‘‘mixing’’ on the kinetics of aggrega
tion processes. Such an investigation would involve the
posite extreme of time scales, whereby theA-D kinetic time
scale is more sluggish than the physical-space transport
scales. Our analysis points up a scheme whereby a sys
atic study of these effects could be pursued.
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APPENDIX A: SIZE-SPACE DIFFUSION EQUATION
DESCRIBING STEPWISE ASSOCIATION

1. Basic reaction

Step-wise association schemes serve as models of
association-dissociation (A-D) processes governing th
growth of spherical micelles@32#. Herein, the basic unit is
taken to be a monomer, denoted byA1 . The A-D scheme
can then be portrayed as a reversible reaction of the foll
ing general form:

An211A1

kn21

2

kn21
1

An , ~A1!

wherein An denotes a cluster containingn monomers. The
micellar solution is assumed to be at equilibrium~sizewise!
at the start of the observation process. We then sele
monomer molecule bound to a cluster as our tracer and
sequently follow its evolution as it moves through the s
a-
s,
b-

n

-
al
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s-
er-
f
rs
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e
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he
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vent. This monomer tracer can undergo the following tra
port processes:~i! diffusion and sedimentation bound to
cluster of the same size;~ii ! transport bound to a cluster of
different size resulting fromA-D processes of monomers t
and from the original cluster;~iii ! dissociation of the trace
monomer from the cluster to recombine with another clus
During each of these processes the tracer underg
physical-space transport representative of a cluster the
mensions of which are identical to that of the cluster
which the monomer is instantaneously attached. As such
monomer tracer undergoing these transport processes ma
equivalently represented by a tracer cluster undergoing c
tinuous changes in size, simultaneous with the cluster un
going movement through the fluid continuum. In the follow
ing, a tracer cluster will be taken to denote a cluster withn
.2. As elucidated later, transport by mechanism~iii !, which
occurs when the tracer is present as a monomer, is accou
for in an indirect manner.

The procedure employed to derive the size-space di
sion equation is outlined below. This scheme is identica
that employed in the next section to derive the compara
equation for the case of a wormlike micelle. In either case
consider a solution initially at equilibrium with respect
transport in size space~i.e., one wherein the equilibrium siz
distribution prevails!. Into this solution we imagine a trace
cluster to be added, which then undergoes physical-sp
transport as well as the reversibleA-D processes describe
by Eq. ~A1!. As is rigorously proved within the framewor
of generalized Taylor dispersion theory, the initial size
such a cluster proves irrelevant in the calculation of m
rotransport coefficients. In addition to the original assum
tion of an equilibrium solution~requiring that the concentra
tion of ‘‘nontracer’’ clusters satisfy the law of mass actio
@34#! we subsequently employ a master equation approac
quantify the rate of change of the cluster probability dist
bution, thereby obtaining an appropriate continuous si
space transport equation governing movement of the tra
cluster.

2. Master equation for the tracer

Based on the above reaction scheme for representing
A-D processes one can write a master equation forP(n) ~the
explicit time dependence of which is notationally su
pressed!, namely, the probability that the tracer is present
a cluster containingn monomers, including itself, irrespec
tive of its position in the physical space. Such an equatio
derived by considering the possibleA-D reactions under-
gone by thetracer cluster containingn monomers~denoted
asAn* !:

An21* 1A1

kn21

2

kn21
1

An* , ~A2!

An* 1A1

kn

2

kn
1

An11* . ~A3!

Accordingly, the master equation governing the probabi
P(n) satisfies the equation
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dP~n!

dt
5kn21

1 P~n21!X12kn21
2 P~n!

1kn
2P~n11!2kn

1P~n!X1 , ~A4!

in which X1 denotes the concentration of the free monome
species. As a simplification we assume thatk2 is indepen-
dent ofn. This will subsequently be shown to be equivale
to the assumption thatd(n) in ~5! is independent ofn. While
the prescription in Sec. II is general enough to treat ot
cases, we nevertheless invoke this assumption so as to f
exclusively upon the effect of theA-D processes on the
physical-space macrotransport coefficients. Based on
above assumption we obtain

dP~n!

dt
5k2Fkn21

1

k2 P~n21!X12P~n!

1P~n11!2
kn

1

k2 P~n!X1G . ~A5!

Equilibrium considerations for reactions~A2! and~A3! on
the other hand require that

kn21
1

k2 5expF2
~mn* 2mn21* 2m1

0!

kBT G ,
kn

1

k2 5expF2
~mn11* 2mn* 2m1

0!

kBT G , ~A6!

in which mn* denotes the standard-state chemical potentia
the cluster of sizen. The latter is equal to the free energ
change occurring when a cluster of sizen is introduced into
the pure solvent;m1

0 represents the comparable standard-s
chemical potential of the monomer@33#. For the dilute solu-
tions assumed, the chemical potentialm1 of the monomer
can be expected to obey the ideal solution relation

m15m1
01kBT ln X1 . ~A7!

Upon using Eq.~A7! and writing m1
05nm1

02(n21)m1
0 we

obtain

kn21
1 X1

k2 5expH 2
@m~n!2m~n21!#

kBT J ,

kn
1X1

k2 5expH 2
@m~n11!2m~n!#

kBT J . ~A8!

In the above,m(n)[mn* 2nm1 . Insertion of the above iden
tification into Eq.~A5! yields

dP~n!

dt
5k2H P~n21!expF2

@m~n!2m~n21!#

kBT G2P~n!

1P~n11!2P~n!expF2
@m~n11!2m~n!#

kBT G J .

~A9!

van Kampen’s@35# expansion method may be utilized
the above discrete master equation to derive the aggrega
c

t

r
cus

he

f

te

n-

space diffusion equation corresponding to the limit of a co
tinuous variation of sizes. This continuum limit is obtaine
by introducing a parameterV denoting the density of the
discrete variablen, followed by an expansion in 1/V. Upon
settingx5n/V, P(xV)5p(x) andm(xV)/kBT5v(x), Eq.
~A9! becomes

dp~x!

dt
5k2FpS x2

1

V Dexp$2@v~x!2v~x21/V!#%2p~x!

1pS x1
1

V D2p~x!exp$2@v~x11/V!2v~x!#%G .
~A10!

The right-hand side of the above equation can be expan
in a Taylor series inx and the resultant expression simplifie
For the sake of brevity the details of such an exercise
omitted here, the ultimate result being

]p~x!

]t
5

k2

V2

]

]x F]p

]x
1p~x!

]v
]xG1OS 1

V4D . ~A11!

To terms of leading order, the above equation resemble
diffusion equation in the presence of a field of force, whi
can be recast in terms of our original variables as

]P~n!

]t
5k2

]

]n H ]P

]n
1P~n!

]@m~n!/kBT#

]n J . ~A12!

The latter is equivalent to the diffusion equation

]P~n!

]t
1

] j

]n
50 ~A13!

@cf. Eqs. ~3! and ~7!#, wherein the following identifications
hold @in Eq. ~5!#:

m~n!5k2, V~n!5m~n!, d~n!5k2. ~A14!

The relationship between Eqs.~A13! and~3! is such that the
former may be regarded as a transport equation in size s
for circumstances where the ‘‘source term’’“•J50, such as
would be the case when the probability densityP appearing
in Eqs.~3!–~7! was independent ofR.

3. Model for µn
0

This section deals with the identification of the potent
V(n)[m(n). Experimental observations@33# in spherical
micellar solutions indicate the existence of an equilibriu
size distribution characterized by a slight degree of polyd
persivity centered around a mean aggregation number. B
on these observations we use the following simple quadr
model for the potential:

V~n!

kBT
5V̂01

~n2n̄!2

2s2
, ~A15!

where n̄ represents the mean aggregation number ans
quantifies the degree of polydispersivity. The numeri

value of constantV̂05V(n̄)/kBT proves to be irrelevant un
der subsequent normalization. Furthermore, in the ensu
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analysisk2 will be set to unity without any loss of genera
ity. This completes the size-space identifications prerequ
to performing explicit calculations of the macrotransport c
efficients.

4. Time scales

Our coarse-grained quantification of the overall transp
process can be justified only in circumstances for which
time scalesT characterizing theA-D processes are much les
than those characterizing the physical-space transport
cesses, thereby enabling us to assume an instantaneous
space equilibrium distribution despite a comparable lack
equilibrium in physical space. Typical values describing
kinetics of the aggregation process involve time scales
microseconds to milliseconds@1,32#. On the other hand
transport in physical space typically involves a diffusi
coefficient of O(1025 cm2/s) @7#. For a dilute solu-
tion ~wherein the mean interparticle separation is quite lar!
one can easily corroborate the assertion t
T (physical-space diffusion)@T (kinetics).

5. Transport by mechanism„iii …

In the above analysis the cluster has been consiste
assumed to be of a size such thatn.2, with the possibility of
transport as a monomer ignored. The reason for such an
proach resides in the fact that a monomer does not satisfy
general form of the master equation~A4!. Under the long-
time limit considered in Sec. III, the tracer can be expec
to possess a probabilityX1 /Xs[p of evolving as a mono-
mer, whereXs is the total solute concentration in the sol
tion. Thereby, the normalization condition~19! needs to be
modified to the form

E
1

`

dn P0
`512p. ~A16!

However, we ignore the above constraint with the und

standing that the macrotransport coefficientsŪ, D̄, etc., as
calculated in Sec. III, need to be corrected for the presenc
monomer transport by appropriate renormalization, e.g.,

M̄ ~Sec. IV!5
M̄ ~actual!

12p
2

pM ~monomer!

12p
, etc.

~A17!

APPENDIX B: SIZE-SPACE DIFFUSION EQUATION
FOR A WORMLIKE MICELLE „LIVING POLYMER …

Wormlike micelles provide an interesting class of mic
lar entities, distinct from the spherical micelles considered
the previous section. Studies of these systems were
neered by Cates@15,16#. Unlike spherical micellar solutions
which display an equilibrium size distribution peaked arou
a mean aggregation numbern̄, wormlike micelles manifest a
range of sizes extending over a significant interval. The la
scenario provides a natural background to illustrate extre
size-distribution effects. Explicitly, this section is concern
with the derivation of the size-space diffusion equation fo
tracer cluster~the labeling of which is carried out in a man
te
-

rt
e

o-
ize-
f

e
f

t

tly

p-
he

d

r-

of

n
io-

d

r
al

a

ner similar to that of the previous section!. Since a number of
details are similar to those of the preceding section, o
essential distinguishing features are outlined here.

1. Basic reaction

In contrast to the stepwise association scheme of the
ceding case, we here assume scission, recombination,
growth from micelles of arbitrary sizes. The reaction step
represented by the equation

An1An8 

k2~n1n8!

k1~n;n8!

An1n8 . ~B1!

As in the previous section we consider a solution which
originally at equilibrium~in size space! wherein we effect
the tracer observation. Furthermore, as in the preceding
ample,k2(n) is assumed to be independent ofn.

2. Master equation for the tracer

The above reaction scheme for characterizing theA-D
process enables us to write a master equation forP(n), the
probability that the tracer is present in a cluster containinn
monomers~including itself!. The reaction pathways unde
gone by the tracer cluster are represented by the schem

An* 1An8 

k2

k1~n;n8!

An1n8
* , ~B2!

An2n8
* 1An8 


k2

k1~n2n8;n8!

An* . ~B3!

The above reaction sequence yields

dP~n!

dt
5E dn8@k2P~n1n8!2k1~n;n8!P~n!C~n8!

1k1~n2n8;n8!P~n2n8!C~n8!2k2P~n!#,

~B4!

whereinC(n) represents the concentration of clusters of s
n in the solution. Equilibrium considerations, however, r
quire that

k1~n;n8!

k2 5expF2
~mn1n8

* 2mn* 2mn8
0

!

kBT
G ;

k1~n2n8;n8!

k2 5expF2
~mn* 2mn2n8

* 2mn8
0

!

kBT
G , ~B5!

where the symbolsmn* , etc. possess the same meanings a
Appendix A. Furthermore, since the original solution w
assumed to be at equilibrium in size space, the chem
potentials of clusters of sizesn,n8 and n1n8 ~denoted, re-
spectively, asmn ,mn8 and mn1n8! satisfy the equilibrium
condition corresponding to the reaction~B1!, viz.,

mn81mn5mn1n8 , ~B6!
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where themn’s are assumed to obey an ideal solution law
the form

mn5mn
01kBT ln C~n!. ~B7!

Based upon the above considerations it is straightforw
to implement an expansion of the above master equation
was done in the preceding section. The resulting equatio
of the same form as follows from Eq.~A4! @cf. remarks
following Eq. ~A14! for the correspondence to Eq.~3!#,
wherein the following identifications hold:

m~n!5k2; V~n!5m~n![mn* 2mn
0[kBT ln C~n!;

d~n!5k2. ~B8!

In addition to a different size distribution from the spheric
micellar case we observe another interesting feature of
model, namely, the dependence ofV(n) upon the micellar
concentration of the solution throughC(n). It is pertinent to
observe that the solution is nevertheless still considered t
a dilute, ideal solution, in which hydrodynamic and inte
cluster physicochemical interactions are both completely
glected. The manifestation of theA-D processes through th
concentration dependence of the macrotransport coeffici
provides an interesting, unconventional source of nonid
ity.

3. Equilibrium

Calculation of the transport coefficients necessitates
taining the equilibrium concentration distribution in the m
cellar solution. Upon invoking the equilibrium condition fo
Eq. ~B1! we find that

k1~n;n8!

k2 5
C~n1n8!

C~n!C~n8!
5expH 2

@mn1n8
0

2mn
02mn8

0
#

kBT J .

~B9!

Based on the latter we make the following ansatz for
equilibrium concentration~cf. also Cates@15#!:

C~n!5exp~2mn
02an!, ~B10!

wherea is a constant to be determined via the normalizat
condition imposed upon the concentration. Additionally,mn

0

represents the standard chemical potential of a cluster
sisting ofn monomers.

For wormlike micelles, which are inherently two dime
sional, it is conventional to assume a standard chemical
tential of the form@33#

mn
0

n
5m̂`

0 1
A

n
, ~B11!

where A is a constant reflecting the energetic interactio
occurring within the cluster, and

m̂`
0 5

def.

lim
n→`

mn
0

n
.

f

rd
as
is

l
is

be

e-

ts
l-

b-

e

n

n-

o-

s

This prescription for the standard chemical potentialmn
0 re-

tains the form of the ansatz proposed for the equilibriu
concentrationC(n), wherein the constanta is replaced by
another constant, namely,a8[a1m̂`

0 . Consequently,

C~n!5b exp~2a8n!, ~B12!

with b a constant that can be determined from the speci
microscale parameters. Use of the normalization condit
for the total solute concentrationC, namely,

E
0

`

dn nC~n!5C, ~B13!

yields

b

~a8!2
5C. ~B14!

If we define a mean aggregation numbern̄ as

*0
`dn nC~n!

*0
`dn C~n!

5n̄, ~B15!

then, using Eqs.~B8! and ~B10!–~B15!, we obtain

V~n!52
n

n̄
1V0 , ~B16!

with V0[V(0) an arbitrary constant which will prove irrel
evant under normalization of the probability.

This completes our identification of the potentialV(n) in
terms of the aggregation numbern. This potential is depen-
dent upon the single parametern̄, the latter representing th
mean aggregation number. In contrast with the spherical
cellar solution case, this mean aggregation number can
shown@33# to be proportional toAC @using Eqs.~B14! and
~B15!#. As such, investigating the effect of the parameten̄
on the transport coefficients is equivalent to investigating
comparable effect of micellar concentration. As alrea
noted, this concentration effect on the transport coefficie
even in the dilute limit considered, constitutes an interest
phenomena with origins in the clustering phenomena tak
place within these systems.

4. Time scales

As in the preceding section we need to justifya posteriori
the legitimacy of the coarse-graining process in terms of
time scales involved. Typical values of the kinetic tim
scales arising in these systems are quoted by Ottet al. @18#,
wherein the time scale of recombination and scission w
estimated to be of the order of 100 ms. In contrast, the t
scales characterizing physical-space diffusion of these e
cially large molecules through dilute systems, such as h
envisioned, can be expected to be of the order of hours. T
justifies our assumption that the size-space diffusional p
cess can be ‘‘projected out,’’ resulting in a coarse-grain
three-dimensional diffusion process that accurately portr
the overall transport phenomena in physical space with
invoking the classical preaveraging assumption.
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