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Calculations are presented for the long-time diffusivity and sedimentation velocégsafciating colloids
Examples of the latter are micellar solutions and microemulsions. The analysis incorporates the role of revers-
ible association-dissociation processes accompanying the physical-space transport of these clusters through the
solution. This is accomplished without the need for preaveraging by transforming the association-dissociation
processes into equivalent “size-space” diffusional processes, which are then embedded into the simultaneous
physical-space transport processes occurring in three-dimensional space so as to obtain a four-dimensional
convective-diffusion equation governing transport of the clusters in both the physical and size spaces. A
generic “projection” scheme framework based on generalized Taylor dispersion theory is then applied to the
problem, thereby reducing the four-dimensional transport equation to a coarse-grained three-dimensional
physical-spaceconvective-diffusion equation. Effects arising from the existence of a distribution of cluster
sizes are accounted for in the latter formulation governingntieantransport process by the appearance of
three coarse-grained phenomenological coefficients whose values depEmalia upon the cluster-size dis-
tribution. These “macrotransport” coefficients include a mean sedimentation velocity vector arising from the
action of external force§f any), a mean molecular diffusivity dyadic, and an additional diffusive-type con-
tribution to the diffusivity corresponding to a convectiV@aylor” ) dispersivity. The latter contribution arises
as a consequence of the spread in settling velocities of the differently sized clusters. The generic framework
developed is illustrated by applications to two classes of micellar solutijrsmlutions comprised of spherical
micelles; (i) solutions comprised of cylindrical or wormlike micellé¢so-called “living polymers’). Each
spherical micelle is modeled as an impenetrable rigid sphere, the radius of which is determined by its aggre-
gation number. The living polymers are modeled by the Debye-Bueche theory, wherein a coiled macromo-
lecular chain is regarded as a Brownian “spongelike” porous sphere through whose interior solvent percolates.
Calculations of the resulting macrotransport coefficients, including their scaling relationships, are presented for
both cases, and their physical significance discussed in terms of the underlying microscale physics. Possible
applications and potential extensions of the generic framework are outlined.
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[. INTRODUCTION fices to focus attention on the transport of a single represen-
tative cluster, hereafter termed a “tracer.” The focus of our
The present work studies the diffusion and sedimentationalysis is to quantify during such a scenario the transport of
of size-fluctuating Brownian “clusters” through otherwise such a tracer cluster through the fluid continuum. The cluster
quiescent, unbounded fluid continua. These Brownian soluiS assumed to undergo both physical-space diffugitue to
tions are assumed to be sufficiently dilute with regard tothermal fluctuations and sedimentatior(due to external
cluster concentration such that individual clusters do not inforces, if any, simultaneously accompanied by a continuous
teract hydrodynamically or physicochemically with one an-Vvariation in its size due to th&-D processes. Of course,

other. Clusters are envisioned as being composed of aggré_eo:lmertatl_on V‘;}'” rl?e absent in the calse of Iforcle-fr((j%so_lute
gates of solute molecules, i.e., “monomer&f. [1] for a  Molecules, in which circumstances only molecular diffusion

: . o of the cluster occurs.
general discussion of systems comprising examples of thi€ !
category. Each cluster is assumed to undergo a reversible The fgature of this problem t_hat, to our kn.owledgg, has
-7 : o : : not previously been addressed in a systematic and rigorous
association-dissociatioA¢ D) process, leading to a continu-

SN manner is the effect of the short-time cluster-size variation
ous temporal variation in the number of monomer molecule?due to theA-D processason the long-time physical-space
instantaneously constituting the aggregéle the following,

) " i . ) transport processes. This temporal variation in cluster size
the terms “size” and “aggregation number” are used inter- o hifests itself via an instantaneous size-specific transla-
changeably except where a need arises to distinguish begng| diffusion coefficient and sedimentation velocity, each
tween them). A situation of dynamical equilibrium as regards of which varies continuously during the movement of the
the C|uster—Size diStI’ibutiOﬂ iS U|t|mate|y eXpeCted to arisec|uster through the So|uti0n Owing to Changes in |ts Size aris_
locally at each point of the fluid as a consequence of theng from theA-D processes. This temporal variation in size
inherently reversible nature of thedeD processes coupled has a nontrivial effect on the physical-space transport prop-
with the relative rapidity of their kinetics compared with erties of such dispersions. Most prior studies of cluster trans-
physical-space cluster transport rates. Because of this, it suport processes have been limited to evaluating the cluster
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mobility for the preaveragedtase, where the cluster size is ing association-dissociation process viewed as diffusional

assumed to remain fixed at its equilibrium mean value duringrocesses in “size” or “aggregation number” spacef.

its entire motion through the solvefgee, for exampld2]).  also Ziabicki[12]). Other continuum approaches have been

In contrast, we treat here the nonpreaveraged case, where thgposed for quantifying the cluster-size distributions—see,

cluster is allowed to undergo relatively rapid fluctuations in€.g.,[13]. Our analysis draws heavily upon generalized Tay-

its size due to thé-D processes as it wends its way through lor dispersion theory14J.

the solution. The scheme ultimately developed will be illustrated by
Practical motivations for studying cluster transport Ioro_applications to two distinct, but interrelated examples of mi-

cesses are manifold. Association colloids are ubiquitous iff€!lar cluster geometries. The first involves a micellar solu-
nature, micellar dispersions and microemulsif®] repre- tion composed of spherical micelles, for which the size dis-

senting common examples. Equilibrium aspects of these S&[ibuf[ion encountered in practice is typically confined to a
lutions have been widely studied, including elucidating therelatlvely narrow range centered about the mean aggregation

many size and shape distributions thermodynamically IOOS|jumber[4]. In the second case we consider similar phenom-

sible in such systems. In contrast, the transport or nonequﬁna for cylindrical mic.:e.lles, f_requently termed “Iiv?ng poly-
librium properties of these entities have received only sparsg‘erfs' The latter e_Xh;b't aIW|de _rant?]e (Ith(EIuster s||z_es, rang-
attention. In this context it is pertinent to note the emergenc g from mon(:_merlc obpo y”F'f.’”C’ e terd|_nv0 \;'?r? very

of recent interest in quantifying the rheology of clustering'2'9€ @ggregation numbers. Fioneering studies or these sys-

o in the works of Cat¢45,16, Bouchaud
systems, exemplifying the more general class of so-calle mS _appear in . . o
soft glassy systemis,6]. The same features that lead to in- 17,18, and others, who investigated the dynamics of these

triguing thermodynamic$3] (namely, equilibrium size and systems in thg ent'angled—regllme domain. Our analysis wil
shape distribution featurgsnake the analysis of transport focus on the_dlﬁusw_e and se_zdlmentary aspects of these sys-
properties equally interesting, albeit more complex. In thist€ms albel_t in the dilute regme. ,

initial foray into the field we do not address larger issues “.‘ the dilute cluster solut|o_n limit it suffices to focus at-
relating to the rheology of these systems when they underg@nt'on on the transport of a single cluster. In the subsequent

shear. Rather, we study only those more limited features a@nalysw, hydrodynamic as well as physicochemical inter-

companying the transport of clusters through otherwise qui%:luster dlnterallctl_onf are nﬁgle?fted, p}errr]nltyng iglegtlon to be
escent systems in which shear is absent. ocused exclusively on the effect of the inter pro-

Owing to the polydispersivity of cluster sizes, transportcesses' Furthermore, owing to the dilute nature of the disper-

processes occurring in these systems exhibit interesting afion, only pairwiseA-D reactions need to be considered.

tributes not present in monodisperse systems. Explicitly, w hese assumptions, V.Vh'Ch hold in the d||gte solution I|m_|t,
will quantify both the diffusivity and sedimentatidhe., mo- ensure that the effective transport properties of the solution

bility) coefficient in dilute clustering systems. The diffusion Can Pe discerned by employing a tracer cluster to sample the
coefficient is shown to involve an additional contribution CONfigurational spacgsize- plus physical-space coordingtes
(termed the “convective” or “Taylor" dispersivity above of the clusters present in the solution. An exact microscale
and beyond the ordinary molecular contribution, Whichdescriptipn Qf the transpprt process wou'ld require calculating
arises from the distribution of settling velocities among thell€ Multivariate probability density functid®(R,n,t) of the

differently sized clusters. Furthermore, our analysis indicate§acer cluster, defined in the four-dimensional configurational
that the size-fluctuation processes accompanyingntioeo- space described at timéy the three scalar physical coordi-

scalephysical-space cluster transport processes may havergteshparametriz]ing thef iﬂstarlltaneo_us [I?]OS!tiO:’l veRtGof q
significant effect upon thenacroscalephysical-space trans- Sﬁy’ tI e center of masef the cluster in physica s;r)]ace, an
port coefficients. On the practical side we note that selfN€ cluster aggregation number In most cases, however,

diffusion coefficients are widely used to characterize suctphysical interest does not center on the detailed microscale
features as size, shape, and cluster-cluster interactions fiSCription provided byP(R,n,t) but rather on a coarse-
these system$7-9]. As such, our analysis points up a grained macroscale probability densi®(R,t) characteriz-
scheme whereby key phenomena arising in these polydisng the totality of the molecular solute species being trans-
perse systems can be accounted for when interpreting expeported, irrespective of the size of the cluster in which the
mental self-diffusion and electrophoretic measurements imonomer molecule characterizing the chemical species be-
such clustering systems. ing transported finds itself at any given instant of time. The

A modest prior literature examines several elementgess detailed density distributid®(R,t) quantifies the solute
closely related to our study. Notably, Cusdl20] considered  species transport process through three-dimensional physical
cluster diffusion in solutions near the consolute point, wherespace(i.e., through the solution accounting for variations
very large sizes of the diffusing unit¢“clusters”)—  occurring in cluster size in an appropriately averaged manner
certainly bigger than the underlying monomeric molecularinat eschews preaveraging.
units—are to be eXpeCted. Fl’ankel, ManC|n|, and Brenner This Coarse_grained density is expected to evolve asymp-

[11] investigated a system similar in spirit to ours, relating tototically according to the macroscale, i.e., physical-space
diffusion and sedimentation coefficients in solutions ofconyective-diffusive conservation equatifi]

coiled linear polymer molecules, and arising from Brownian

size fluctuations stemming from the inherently flexible na- -

ture of such entities. Our goal here is the development of a E+U-VP= D:VVP, (1)
generic conceptual framework for quantifying the transport

of dispersions of association colloids, with the accompanywherein the time- and position-independent sedimentation
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The fluxesJ andj, can be expected constitutively4] to
possess conventional convective and diffusive contributions
as follows:

vector velocity U and dispersion dyadi®, respectively,
guantify the coarse-grained convective and diffusive solut
transport mechanisms in the fluid continuum. Implicitly em-
bedded within these coefficients are the overall effects of the J=M(n)F(n)P—D(n)VP, (4)
comparable microscale transport processes arising from the
continuous variations in cluster size. For a monodisperse sys- P
tem (of aggregation numbaer) these coefficients are, respec- j=m(n)f(n)P—d(n) o (5)
tively, identical to the Stokes settling velocig=U(n) and
molecular diffusivityD=D(n) appropriate to clusters of size \yherein M(n) denotes the physical-space cluster mobility
n. Our objective is, starting from the specified microscalecoefficient, andF(n) the external vector force exerted on the
transport data, to calculate the coefficiebtandD govern-  cluster as a whole. Their respective counterparts in size space
ing the macroscale transport processes for circumstancese denoted byn(n) andf(n). Diffusivities in physical and
where a distribution of cluster sizes exists owing to a® size space, respectively, denoteddgn) andd(n), are re-
processes. lated to the respective hydrodynamic mobility coefficients
through configuration-specific Stokes-Einstein relati®s:

Il. FORMULATION D(n)=kgTM(n), d(n)=kgTm(n), (6)

W ,rAdS 'Tﬁ'c?rteg In tr?e ]Jntro?nucltlonl, a:terntlﬁg '? di'rr]eth?d :O'with kg the Boltzmann constant. For the reversible reaction
vards the transport of a single cluster undergoing fluctuag o meaq subsequently considered, the scalar fgrgecan
tions in size due to the reversibfe D processes. Conforma-

tional changes irshape though potentially interesting, are always be written as the negative size-space gradient of a
not considered in this work. A variety of schemes can b otential energy functio(n) (see Appendices A and)B

imagined for theA-D processes accompanying the physical—tosgeoiéwﬁtgﬁ)gga“on together with E¢6) permits £q.(5)
space transport. However, many such processes lead to reac-
tion schemes that can be represented physically as size-space 9
diffusional processes, with an internal force-derived potential j=—d(n)exd —V(n)/kgT] (?_n{P exdV(n)/kgT)]}.
energy function restricting the cluster size range. Our analy- @
sis will, in general, focus only upon those reaction schemes
for which such aiffusion equatiorrepresentation is consis- The above microscale data are to be supplemented by
tent with the underlying physids2]. respective physical- and size-space boundary conditions. The
The starting point for our analysis is the four-dimensionalformer is embodied in the generic requirement that all the

microscale conservation equation governing both sizealgebraic moments of the distribution functi®hconverge,
specific spatial(R) and position-specific aggregational)  namely,[21]
transport of the tracer cluster through the unbounded fluid:

IR-R'|"P—0 (m=0,12...) as |R—R'|—>,

® V-J=j,—] 2 ®
_+ . )= J— 1,
at InTln-1 @ and the latter as
where P=P(R,n,t|R’,ng)=P(R—R’,n,t|ny) represents j=0 for n=1. ©)
the complete microscale conditional probability density|, 5qdition. we have for the initial condition that
(Green’s functioh signifying the probability that at a time ’
the tracer cluster is of aggregation numhend is located at S(R—R’)8(n—ngy) (t=0),
positionR, given that at time= 0 the cluster was centered at “lo (t<0), (10

position R’ and was of sizen, [19]. The operatorV

=(d/9R),+ denotes the size-specific physical-space gradienwith § the Dirac 6 function, andn, the initial size of the
operator. The physical- and size-space fluxes of the probabitluster at timet=0. Satisfaction of Eq(8) assures the con-
ity density P, are denoted respectively yandj. In situa- vergence of the various momental integrals arising in the
tions wherein a large range of aggregation numbers are pogeneral theory14]. It is also readily verified from the above
sible (such as will be assumed of all the examples consideredystem of equations that the solutiBrsatisfies the normal-

in this papey, it is permissible to replace the above discreteization condition

“diffusion equation” (2) by a version involving a continu-

ously varying indesx: J f P(R—R’,n,tingdn ®R=1 (t>0) V(ny,R").
IP dj (11)
4V.J+—=0, 3)
ot an In the above,d®R denotes a volume element in three-

dimensional physical space arth the comparable-size
whereinj=j(R,n,t|ny) now represents the size-space flux, aspace incremental element. Size space is assumed to extend
continuous function oh, and d/dn=(d/dn)g denotes the from the basic monomer uninE1) to clusters of sizen
position-specific size-space gradient operator. =, Note that we have used the Euler-Maclaurin sum for-



PRE 59 LONG-TIME NONPREAVERAGED DIFFUSIVITY AND . .. 2129

mula to replace the sum over the discrete indéyy a com-  PJ(n), the latter corresponding to the steady, long-time limit
parable integration over the continuous indexEquation  of the unsteady-state conditional probability density,
(11) shows that the total probability of finding the tracer
somewhere in physical spac®,, :{—w<x;<w«;i=1,2,3, def.
and contained within a cluster of some sizgl<n<o} is Po(Nn,t|ng) = f P(R—R’,n,t|ng)d®R,
conserved at each instant. Res
As stated in the Introduction, physical interest generally

centers not on the four-dimensional microscale distributionthat t_he cluster POSSESSES a SIZH_ tmeurrespec_nye of its
P, but rather only on the coarse-scale macroscopic descriptélysical-space locatioR. The field Po(n) satisfies the

= N . . teady-state differential equation
P of the transport processes occurring in three—dlmensmnasi y g

physical space, as embodied in the macroscale conditional djz
density: —If: =0, (16)

. def. foo
P(R—R’,t|no):fP(R_R'7”1t|”o)dn- (12 with
1

. . . def.
It is an |mmed|§1te consequgnce.of E@sl) and (12) that. jZ(n) = —dexp(—V/kBT)i[PEf exp(VikgT)], (17)
this coarse-grained probability is conserved in physical dn
space:
in which the latter flux density satisfies the boundary condi-
f P(R-R’,t|ng)d®R=1 (t>0) V(ny,R"). tions
RW . 00
(13 Jo=0 atn=1%= (18

Asymptotically, for sufficiently long timegsee below, P is  together with the normalization condition

independent of the initial cluster sizg [14], and hence is .

functionally of the formP(R—R’,t). J Py dn=1. (19
The initial- and boundary-value problem posed by the 1

system of microscale equatiof3)—(11) possesses the same ) .

physicomathematical structure as that of the generic problenih€ solution of Eqs(16)—(19) is

of generalized Taylor dispersion theof¥4]. This equiva- . _1

lence is established when one identifies the‘zl s{lz)e”and pg(n)ZU exr[—V(n)/kBT]dn+ exf —V(n)/kgT].

physical-space positiofR) with the respective “local’(q) 1

and “global” (Q) coordinates of the latter theory. General- (20

ized Taylor dispersion theory shows that, for long times, L

namely,[|d(n)[t/n?>1 (with |[d(n)| denoting some norm of The macrotransport coefficientsandD appearing in Eq.

the size-space diffusivity, and denoting the mean aggrega- (1) are expressed in terms of respective quadratures of

tion numbey, the asymptotic solutiof? of Eq. (3) satisfying PZ(n) [14]. In this manner the average settling velodityf

Egs. (4)—(11) matches momentwise '@e comparable dom"the cluster is given by

nant long-time asymptotic solution d?, whose transport

through physical space is governed by Eb.together with U=UF, (21)

the respective boundary and initial conditions

— where
|IR-R'|"P—0 (m=0,1,2...) as |[R—R'|—»
(14) _ def. o
and UE<U<n>>=fl dn P5(m)U(n), (22
= g(R(t<RO))_ (t=0), (15) in which
Un)=M(n)F(n) (23

Furthermore, by virtue of having matched the respective mo-

ments of P and P, the theory also provides an explicit js the settling velocity of an aggregate of simg and F
scheme for determining the macrotransport coefficidtts =F/F(n) represents a unit vector in the spatial direction
andD via appropriate quadratures of the specified microscal@arallel to the applied forcg, in which F(n)=|F(n)|.

phenomenological dataata explicitly embodied in the mi- ~ The dispersivity dyadic is represented by the U
croscale transport coefficients, and implicitly appearing in o
Egs.(3)—(5)] over the cluster-size domain. =DM| +DCFF, (29

Implementation of the theory14] requires,inter alia,
knowledge of the solution of a steady-state scalar fieldvherein
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_ def. o imagined for constitutively quantifying tha-D size-space
DM=(DM(n)) = f dn P3(n)D(n) transport processes. However, the above formulation is suf-
1 ficiently general to provide robust generic prescriptions for
- determining the three macrotransport coefficients pending
EkBTJ dn P3(n)M(n) (25) eﬁplicit specification of the requisite constitutive relation-
1 ships.
, , e An outline of the rest of the paper is as follows: To place
is the average physical-space molecular diffusivity of theye preceding concepts on a firmer basis while also illustrat-
cluster, and ing the significance of size variation effects, two distinct
o " - A-D schemes will be considered. Appendices A and B each
DC:f dn P5(n)B(n)[U(n)—U] (26) outline respective schemes whereby the master equation for
1 the size-space transport processes can be recast into a diffu-

) o . sion equation format, thereby identifying both(n) and
represents the Taylor or convective contribution to the dlsv(n)_ Subsequently, in Secs. Ill and IV we revert to the

per_siv_ity. The Iatt_er contrib_ution _s'_[ems from the c_ontinuousgeneric quadrature formula developed in Sec. Il using ap-
variation in settling velocity arising from the size-space

, : ; propriate models for the physical-space transport coefficients
transport processe(s.e:, due to continuous changes in the M(n) [and henceD(n)] to obtain the macrotransport coef-
size of the cluster as it traverses the fluid — —

Appearing in the latter integral is yet another time- ficientsU and D. Section V concludes with an outlook for

independent scalar fiel(n), which represents the solution fUture research directions.

of the differential equatioril4)
I1l. MACROTRANSPORT COEFFICIENTS

o B d FOR SPHERICAL MICELLAR SOLUTIONS
Jjo(n) an " dn

dB —
P%d(n)ﬂﬂ%(n)[wm—w . | N
Identification of the size-space mobility coefficiantn)

(27) and the potential energy driving for&4n) for the spherical
micelle case is effected in Appendix A. The latter identifies
the potential in terms of the mean aggregation hunmband
spreado in the chemical potential distribution. Calculation

ﬁzo at n=1x. (28 of the macrotransport coefficients requires specification of
the physical-space mobility coefficier¥(n) and force

The solution of Eqs(27) and (28) can easily be obtained F(n). For the present spherical micellar case the physical-

from the knowledge of the fiel®@] given by Eq.(20), yield- ~ space mobility coefficient can be obtained from Stokes law

subject to the boundary conditions

ing by modeling the cluster as an impermeable sphere of radius
r. The corresponding mobility then scales inversely with the
n o exgV(n')/kgT] _radius of the sphere. The radius_ of the spherical micelle can
B(n)=bo—f dn’T itself be related to the aggregation number as
1 n
r(n)ecn'?, (3D

n" - — -
XL dRLU(R) —Ulexd —V(M/ksT], (29 whence the mobility obeys the relationship

whereby is an integration constant whose numerical value is M(n) n~ %8 37
irrelevant in establishin® € via Eq.(26). Substitution of Eq. M(n) s (32

(29) into Eq. (26) yields the following expression fdb®:

Furthermore, using the fact that the forl€én) on a cluster
scales withn, we have that

P © -1
DC:{ j dnexp:—V(n)/kBT]]
1

y Fdn" exV(n")/ksT] TR 33
1 d(n”)
5 This serves to identify the physical-space coefficients pre-
x{ f”"d n’[U(n’)—U]exr[—V(n’)/kBT]] ) requisite to calculating the macrotransport coefficidot®
1 via Egs.(21)—(25) and Eq.(30). The remaining size-space
(30) E:Xifo)i?ents are identified in Appendix [&f. Egs.(A14) and

Explicit calculation ofU, DM, andD€ from the preced- Use of the preceding identifications in H@0) yields

ing formulas requires specifying constitutive equations for . —51) -1 =
both the size- and physical-space mobility coefficient&)) PZ(n)= f dnexd — (n—n) exd — (n—n) _
and M (n), respectively, as well as the size-space potential 1 207 202

V(n). As already indicated, a variety of schemes can be (34
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The fact that the lower limit of integration in the normalizing 20
weight function is cut off ah=1 rather tham=0 results in = 19 =
analytic expressions that are quite cumbersome. However, 5 | .F
the computed values do not depend crucially on the lower N -
limit used in evaluating the above integrals so long as the "75'
mean aggregation number is sufficiently large and the distri- £ 16F
butional spread small compared with the mean aggregation kg 15F
number. This represents the situation typically encountered & 1aF
for spherical micellar solutiong}]. In such circumstances it 8" E
is possible to replace the lower integration limit by=0 2 13F
without significant error. The resulting expressions for the § 12F
macrotransport coefficients obtained from Eg281)—(25) = 11E
and Eq.(30) can then be generically expressed in terms of a 1ok
scaling function as “E
0.9 o
Y=n"1(T), (35 08F o o
0 1 2
wherein ¢ represents a generic macrotransport coefficient . ~
andf denotes a scaling function that exhibits the following Weighted Spread, o
behavior: FIG. 1. Effect of polydispersivitg on the mean settling veloc-
1 (x—0), ity ratio U/U(n) for spherical micellar solutions.
F) =] xe (x>1), small departures from monodispersivity, this ratio decreases

. . below unity, followed by a steep rise thereafter. The physical
in which the exponents and » [22] depend upon the Spe- g,pianation of this behavior is straightforward: As already
_cn°|c transp_ort Coeff|_c|ent be_lng_ cor_15|dered. Also appearing,gied the settling velocity scales @&, For small values of
in Eq. (35 is the weighted distributional spread: the spreadr, the smaller values af are sampled more fre-
def. quently than are the larger valugsf. [24] for a simple
5= i‘ (36) proof). This leads to a reduction in the mean settling velocity
ni2 below that which would have occurred had the tracer size
simply coincided with the mean aggregation number. How-
When the lower limit in Eq(34) cannot be replaced by ever, at the larger values @ the lower limit is cut off at
zero, such as occurs when the spread satisfies the inequalfy= 1, whereas no such constraint exists for the upper limit.
o>1, the above scaling arguments do not hold and the rethus, when the chemical potentials are such that a large
sulting transport coefficients depend nontrivially on the mearspread in the distribution occurs, the mean settling velocity
aggregation numben. Despite the fact that some of the will generally far exceed the settling velocity occurring at the
assumptions underlying the analysis do not remain rigormean aggregation number. Furthermore, from the computed
ously valid in such circumstancésf. the discussion preced- values it can be discerned that the scaling function in the
ing Eq.(A15)] we have nevertheless also studied such casegbove exhibits exponents=3 and a~35 (cf. [25] for a
The analytic quadratures obtained by substituting Egssimple proof of the value of the latter exponent
(32—(34) into Egs.(21)—(25) for then=0 case can be ex- Mean diffusivity.Polydispersivity effects on the normal-

pressed in terms of parabolic cylinder functions, whos€zed mean molecular diffusivitygp™/DM(n) are portrayed in
asymptotic expansions are well documen(28]. In the fol-  Fig. 2. Since the microscale diffusivi(n) scales as 3
lowing discussion, however, owing to their algebraic com-the observed variation is consistent with the expected initial
plexity we do not present explicit analytic expressions for thejse deriving from the preferential sampling of the smaller
resulting macrotransport coefficients, as such formulas argggregation numbers, followed by a manifestation of the ef-
not very illuminating in and of themselves. Instead, we indi-fect of the cut off at the lower aggregation number limit.
cate qualitative featuretobtained numerically describing  scaling exponents for this case were determined from the
the functional dependence of the macrotransport coe]‘ficient@otS to bev=—1% anda=—0.4.

upon the spread in cluster sizes. All of the resulting features cgnvective dispersivityFigure 3 depicts the effect of
are graphically indicated in terms of the scaling variable yarying the size distribution on the convective dispersivity,
Even in those cases wherein replacement of the lower intangicating a monotonic increase with increasing departure
gration limit by zero does not strictly hold, we found that the from monodispersivity. No counterpart of this Taylor disper-
qualitative features displayed in the subsequent plots are n@{on phenomenon arises during either the diffusion or sedi-
significantly altered. Accordingly, we have restricted our-mentation ofmonodisperselusters. The qualitative trends
selves in what follows primarily to studying the effect of the gepicted in Fig. 3 are completely consistent with the fluctua-
scaled variabl@& upon the three macrotransport coefﬁcients.tional origins ofDC

Mean velocity of settling=igure 1 depicts the effect of the Significance of resultsThe above plots display the re-

size-distribution spread upon the ratio of the mean cluster . o ; -
spective variations in the three macrotransport coefficients

settling velocity U to that of the settling velocityU(n)  caused by the size-induced spread in chemical potential.
=M(n)F(n) at the mean aggregation number. Initially, for Each manifests polydispersivity effects resulting from the
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FIG. 2. Effect of the polydispersivity- on the normalized mean . . ~ . . ;
the polydispersivity parameter for spherical micellar solutions.

molecular diffusivityEM/D(F) for spherical micellar solutions.

reversibleA-D processes, wherein the cluster-size growthPTOPOSe to define a mean aggregation numbgsay, based

mechanism occurs by stepwise association processes. {pON the observed setiling velocity:
practical situations involving spherical micellar solutions the — .
above effects are unlikely to prove very significant owing to u n’3 3
the relatively low polydispersivity indices typically encoun- (H) _HTIB' (37
tered in such systems. Nevertheless, our analysis provides

rigorous estimates of the magnitudes of such effects. A perfhis choice would, however, imply that

haps unexpected feature of this example is the existence of a

C

convective or Taylor contribution to the diffusional process, DM {8
a phenomenon that has no counterpart in monodisperse mi- =# =, (39
cellar solutions. D(n) n

It might appear that the above features with respect to o ) . ] )
both the mean molecular diffusivity and mean settling veloc-2n apparent violation of the Stokes-Einstein equation owing

ity could be subsumed under the choice of an appropriatelj° the fact that
defined mean aggregation number. For instance, one might

Normalized Convective Dispersivity, DY [mU((n)] 2

3.5

3.0

25

2.0

1.5

1.0

0.5

0.0

L L L AL B LB RN

(=}

Weighted Spread, &

U=(M(n)F(n))#(M(n))}F(n)). (39)

If, alternatively, one chose to define a mean mobility coeffi-
cient such that

def.

~ U
(M(n)>=m, (40)
then

DM=KgT(M(n))#kg T(M(n)). (41)

The latter serves to quantify the apparent violation of the
Stokes-Einstein relationship. Figure 4 displays the ratio

(M(n))/{M(n)) obtained for differentr.

lllustrated in this section were several effects arising from
the spread in cluster sizes about a mean aggregation number.
Specifically, the spherical micellar solution case was moti-
vated by the availability of the constitutive equations for the
microscale size- and physical-space transport coefficients.

FIG. 3. Dependence of the normalized convective dispersivityThe next section quantifies similar behavior for another im-

DS/[nU(n)]? on the degree of polydispersivity for spherical mi-

cellar solutions.

portant case, wherein the cluster size distribution exhibits
novel features not present in the spherical micellar case.
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velocity ratioU/U(n) for wormlike micellar solutions. FIG. 6. Variation of the settling velocity (n) with cluster size
n for monodisperse wormlike micellar solutions. Since only the

qualitative features of this behavior are of interest we do not explic-

IV. MACROTRANSPORT COEFFICIENTS ) . . . .
itly display values forU(n) (a dimensional quantily

FOR WORMLIKE MICELLAR SOLUTIONS

Results are presented in this section for the macrotrangelationship between the Kirkwood-Risemari80] and
port coefficients arising in situations for which the aggrega-Debye-Bueche theories. They concluded that both theories
tion processes are represented by @4). Derivation of the  possessed an equivalent microscopic status, differing only in
required size-space diffusion equation is effected in Appenthe statistical assumptions underlying their derivation. Fur-
dix B, wherein we identify the size-space transport coeffi-ther details regarding both motivation for and use of the
cients in Egs.(B8) and (B16). Interesting features of this porous sphere model can be found in Frankel, Mancini, and
example, which contrast with the preceding spherical micelBrenner[11], wherein a related example involving size fluc-
lar case aréi) dependence of the mean aggregation numbetuations of a porous-sphere, polymer model was studied. The
on micellar concentration; andi) the unique form of the essential scenario studied therein is similar in spirit to the
potential energy function governing the size distribution. Ascase analyzed here, except that there the size fluctuations
in the spherical micellar example, the forleén) scales with ~ resulted from the inherently flexible nature of the polymer
n. The mobility coefficientM (n), however, requires a bit molecule undergoing thermal fluctuations, rather than from
more explanation. This example is analyzed in the spirit othe A-D mechanism as outlined here.
extreme simplicity, omitting complications that necessarily ~According to the Debye-Bueche theory, the mobility co-
accompany more realistic descriptions of polymer solutiorefficient of a uniformly homogeneous porous sphere of ra-
behavior, especially with regard to excluded-volume issuesliusr and permeabilityK’ moving through a solvent of vis-
and the like[26]. Complications accompanying a more rig- COSity u is
orous analysis can easily be accommodated within the gen-
eral framework outlined in Sec. II. 1 | 1+(3)K(1—KY?tanhK ~*2

Since our primary aim is to illustrate macroscopic effects M(r)= G ur 1_ K2t “12 , (42

. . ) : anhK

resulting from fluctuations in the cluster aggregation number,
rath.er t_han co_ncentrat.ing on detailgd theqries _of.polymer b&yhere K=K'/r? is the dimensionless Darcy permeability.
havior in §olut|ons we instead consider a simplistic mode'l forrhe dimensional permeability is knowf81] to scale in-
the mobility of a polymer cluster, namely, the classicalygrsely with the volume fraction of the chaifise., beads
Debye-Bueche porous sphere mof2f]. Research on the comprising the porous sphere. In conjunction with the fact
dyna_mlcs of polymer solutions is often based upon the 9€0mat the radius of the sphere scales wit?, for an ideal
metric representation of polymers as macromolecular chaing,ndom walk we obtain
possessing an enormous number of degrees of freedom, and
subsequently employing simplified kinetic models such as K=An"12 (43
“bead-spring” or “bead-rod” models as well as extensions
thereof(cf. Bird et al.[28]). In these models, hydrodynamic where\ is a nondimensional proportionality constant. Using
interactions among beads are either completely neglected oepresentative parametric values provided in Debye-
simplistically accounted for via use of the equilibrium pre- Bueche’s article the constaitwas estimated to b&(1),
averaged Oseen-Burgers tensor. In contrast, the porowshereupon we adopt the valae=5 in this analysis. Substi-
sphere model proposed by Debye-Bueche accounts for hyution of Eq.(43) into Eq. (42) yields the requisite expres-
drodynamic interactions by considering the hindered flow ofsion for M(n).
the solvent through a permeable sphere composed of a clus- The essential framework of the subsequent theory is simi-
ter of resisting beads. Felderhof and Deut28] studied the lar to that illustrated in the preceding section. Accordingly,
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tures of this behavior are of interest we do not explicitly display

we restrict ourselves in what follows only to the unique fea-values forM(n) (a dimensional quantily

tures of the wormlike micelle case, followed by a brief dis- . . . .
y velocity for different aggregation numbers. Due to a combi-

cussion of the results obtained. One of the features distin="": 4
guishing the present case from the previous one is th@ation of effects resulting from the dependence of the force

concentration dependence of the mean micelle length. Whilgnd mobﬂ@i/hu_pon the_' aggregatlo? numbert,) thls(;/ekt)r(]:lty Itr;;
this feature makes the present case more interesting, it sim feases with Incréasing aggregation number. ©n the other

taneously imposes certain constraints upon the mean aggr %’?d'tthe probability tQ|Istc;|but|om44) ftc;]r the cluséj[er Size b
gation number owing to our prior assumption of diluteness!Mc'Cat€s an exponential decrease with aggregation nUMber.

Large mean aggregation numbers would necessarily impl _hus, larger velocities are sampled (_)nly infrequently and
high concentrations, nullifying the assumption of a dilute’ ice versa. Together, these factors nullify one another, result-

system. And at these high concentrations one encounters rglg In an almost |mperc_ept|ble effect of size distribution
upon mean settling velocity.

gimes wherein concentration effects arising from entangle- e e A .
ment and reptation of polymer chains acquire heightened Sigé Mean _dlffuswlty of settlingFigure 7 depicts thg eﬁggt of
nificance. Bouchaud and co-workdrk7,18 have observed ggregation number on the mean mole_cular dlffu_swlty. in
several interesting features accompanying diffusion in thes ontrast to t_he gon_wparable settlm_g ve_Iqmty case, size effects
regimes, including evidence for Levy flights contrast to ere are gune S|gn|f|c_ant. Mean dlfqumty values at different
the normal Brownian random walkThese effects, though aggregatmn nu.mberem regimes which are expected to be

f 8Iassmed as diluteare seen to be greater by a factor of

interesting, are beyond the scope of the present work. W o .
9 y P P almost 2 to 3 than those arising at the mean aggregation

thus proceed with this caveat of limitations imposed by the . . : X
diIuteFr)less criterion P y number. The underlying reason for such behavior resides in

. o . the preferential sampling of the low aggregation number
Using Eq.(B16), Po(n) can be obtained from E¢20) as clusters, which in turn possess larger mobiliti€gg. 8). At
1 high aggregation numbers the mean diffusivity appears to
exp—n/n). (44)  reach an asymptotic limit characteristic of the fact that the
mobility and probability distribution both fall to zero at large
n. However, at such large aggregation numbers the transport
This expression indicates that at a given value,d?;(n) is  coefficients will depend primarily upon entanglement effects,

functionally dependent only upon the mean aggregatiornn which circumstances the assumption of a dilute solution
numbern. In a manner similar to the scalirmsatzmade in ~ Would clearly be invalid.

the previous section, all the macrotransport coefficients can Convective dispersivityrigure 9 displays the functional

be expected to scale d$ﬁ), with f(x)—x® for x>1. Re- dependence of the convective dispersivity upon the mean

sults obtained for the mean settling velocity, mean moleculaf99regation number_. Such size effects_can t_)e exp_e_cted o be
much more dramatic for the convective dispersivity case

diffusivity, and convective dispersivity are discussed below. e
y P y than for the other two macrotransport coefficients. As al-

Mean velocity of settlingFigure 5 indicates the effect of . . g ; ;

i o i — ready noted, the convective dispersivity arises solely in re-
cluster polydispersivity on the mean settling velodity This  gponse to the distribution of micelle sizes. An increase in
mean settling velocity is almost identical to the settling ve-mean aggregation number leads to a wider spread in the size
locity U(n) at the mean aggregation number. The source ofiistribution, exemplifying the exponential distributigd4)
this behavior can be comprehended by analyzing the varissf sizes. Such behavior is consistent with the observed in-
tion of the size-specific settling velocity(n) with aggrega- crease in convective dispersivity with increasing mean ag-
tion numbern. Figure 6 qualitatively depicts the settling gregation number. Based upon the dispersivity values ob-

Po(n)=

f dnexp —n/n)
1
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FIG. 9. Dependence of the normalized convective dispersivity FIG. 10. Dependence of the mobility rat{&l(n))/(M(n)) on
DC/[nU(n)]? on mean aggregation numberfor wormlike micel-  mean aggregation numbarfor wormlike micellar solutions.
lar solutions.

dispersivity under normal sedimentation conditions, we have

served at large aggregation numbers the scaling expanentshown that the effect of polydispersivity on the molecular
for DC/[FU (H)]Z is empirically established to be about diffusivity is a nontrivial one, leading to an increase in clus-
~0.7. ter mobility by a factor of almost 3. Furthermore, we have

Mean mobility.As in the spherical micelle case a mean €valuated the functional dependence of the macrotransport

mobility based on mean settling velocity can be defifefd  coefficients on the mean aggregation numbetn view of

Eq. (40)]. The variation in the resulting ratio of apparent-to- the relationship that exists betweanand micellar concen-
actual mean mobility is indicated in Fig. 10, again quantify-tration the above result camter alia, be considered as rep-
ing the apparent violation of the Stokes-Einstein relation. resenting the effect of concentration on the transport coeffi-

_Significance of resultsThe preceding discussion deals cients, It is interesting to note that such an effect arises even
with size distribution effects on the macrotransport coeffi-iy the dilute solution regime.

cientsU, DM, andD® characterizing the transport of poly-
d?spers.e lwormlike micelles through the solution. Such poly- V. CONCLUSIONS
dispersivity effects appear to be specially pronounced for the
mean molecular diffusivity case. Moreover, the presence of a The preceding analysis furnishes a general framework for
Taylor dispersion contribution stems entirely from the poly-analyzing diffusion and sedimentation phenomena in sys-
dispersivity of the micellar system. An order-of-magnitudetems exhibiting a distribution of cluster sizes stemming from
estimate for this additional diffusivity contribution serves to the existence of reversible association-dissociation processes.
guantify its significance in relation to the mean molecularExamples of such systems include micellar solutions and mi-
diffusivity. From Fig. 9 we extract a “typical” value of croemulsions. The generic scheme developed describes the
SC/[FU (F)]2=1000. Consequently, transport of dilute dispers_ions of clusters through an oth_er-
wise quiescent solvent via the use of coarse-grained, size-
— —, independent, physical-space transport coefficients appearing
D_~107333 U(n) _ (45) in a convective-diffusion equation governing the local spatial
DM kBTM(F) cluster concentration (probability density. This was
achieved through use of generalized Taylor dispersion
. . . . : — theory.
US'TE approximate 1/5203|Ing- relationships, namety(n) Our scheme was illustrated by analyzing two practically
~n~=andM(n)~n~" (not rigorously true for the porous motivated examples encountered in dealing with micellar so-
sphere modgltogether with characteristic valuesif(n) to  lutions. In the first case we studied the aforementioned ef-

obtain the prefactor, we find that fects for a solution composed of spherical micelles. In such a
scenario the cluster size is characterized by a Gaussian dis-

DS . tribution about a mean aggregation number. Using known

—~10 %n*52, (46)  information about such solutions we quantified the mean

DM transport coefficients in terms of typical micellar data avail-

able in literature. In the second case, similar effects were
with g denoting the dimensionless force. This suggests thagtudied for cylindrical or wormlike micelles. Due to the re-
the extra contribution to the diffusivity becomes significantversible scission processes present in these latter systems
only for very long macromolecules subject to large accelerathey are widely regarded as models of “living polymers.”
tions (such as would arise during ultracentrifugajioDe-  Interesting features arising for this case include an exponen-
spite the relatively small value predicted for the convectivetial attenuation of the size distribution with mean aggrega-
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tion length. Furthermore, in such systems the mean aggregaent. This monomer tracer can undergo the following trans-
tion length depends upon the micellar concentration. Thusport processes(i) diffusion and sedimentation bound to a
for this class of systems the macrotransport coefficients okeluster of the same sizé€j) transport bound to a cluster of a
tained in our work serve to quantify the variation of the different size resulting fromd\-D processes of monomers to
transport coefficients with micellar concentration, at least inand from the original clustefjii) dissociation of the tracer
dilute systems. monomer from the cluster to recombine with another cluster.
A number of potential applications arise from the aboveDuring each of these processes the tracer undergoes
results. Self-diffusion coefficients are often employed to prophysical-space transport representative of a cluster the di-
vide a measure of mean aggregation numbers in sphericatensions of which are identical to that of the cluster to
micellar solutions, at least in circumstances where such sowhich the monomer is instantaneously attached. As such, the
lutions may be regarded as being approximately monodismonomer tracer undergoing these transport processes may be
perse. Our analysis provides a scheme whereby polydispeequivalently represented by a tracer cluster undergoing con-
sivity effects can be incorporated into the interpretation oftinuous changes in size, simultaneous with the cluster under-
experimental results so as to furnish estimates of the errorgoing movement through the fluid continuum. In the follow-
arising from a lack of true monodispersivity. Moreover, ouring, a tracer cluster will be taken to denote a cluster with
analysis is sufficiently general to also embrace the effects of 2. As elucidated later, transport by mechanigim, which
micellar shapdsuch differences being embodied in the con-occurs when the tracer is present as a monomer, is accounted
stitutive forms assumed for the microscale potential and théor in an indirect manner.
mobility coefficient3 on the macroscale transport coeffi-  The procedure employed to derive the size-space diffu-
cients. This constitutes a possible future application for desion equation is outlined below. This scheme is identical to
termining the mean properties of such micelles in solutiorthat employed in the next section to derive the comparable
from measurements of their settlifigr electrophoreticve- equation for the case of a wormlike micelle. In either case we
locities and mean self-diffusivitigs]. Furthermore, the fact consider a solution initially at equilibrium with respect to
that our generic analysis is not restricted exclusively to mitransport in size spadge., one wherein the equilibrium size
cellar applications permits possible extensions towardslistribution prevails Into this solution we imagine a tracer
studying the effects of “mixing” on the kinetics of aggrega- cluster to be added, which then undergoes physical-space
tion processes. Such an investigation would involve the optransport as well as the reversibdeD processes described
posite extreme of time scales, whereby thé kinetic time by Eq. (Al). As is rigorously proved within the framework
scale is more sluggish than the physical-space transport timgf generalized Taylor dispersion theory, the initial size of
scales. Our analysis points up a scheme whereby a systesdch a cluster proves irrelevant in the calculation of mac-

atic study of these effects could be pursued. rotransport coefficients. In addition to the original assump-
tion of an equilibrium solutiorirequiring that the concentra-
ACKNOWLEDGMENTS tion of “nontracer” clusters satisfy the law of mass action

[34]) we subsequently employ a master equation approach to
This work was supported jointly by both the Office of quantify the rate of change of the cluster probability distri-
Basic Energy Sciences and the Mathematical, Informationpution, thereby obtaining an appropriate continuous size-
and Computational Sciences Division of the U.S. Departspace transport equation governing movement of the tracer
ment of Energy. Useful discussions with Vibha Srinivasancluster.
Daniel Kamei, and Professor Shimon Haber are acknowl-

edged. 2. Master equation for the tracer

APPENDIX A: SIZE-SPACE DIFFUSION EQUATION Based on the above rea}ctlon scheme for _representlng the
DESCRIBING STEPWISE ASSOCIATION A—D_p.roc.esses one can write a ma.ster.equauorl_i’(or) (the
explicit time dependence of which is notationally sup-
1. Basic reaction presseyl namely, the probability that the tracer is present in
cluster containingh monomers, including itself, irrespec-
Ive of its position in the physical space. Such an equation is
derived by considering the possible-D reactions under-
gone by thetracer cluster containingh monomers(denoted

Step-wise association schemes serve as models of t
association-dissociation AED) processes governing the
growth of spherical micelle§32]. Herein, the basic unit is
taken to be a monomer, denoted By. The A-D scheme .
can then be portrayed as a reversible reaction of the foIIowgSA“)'
ing general form:

ki y
-
¢ iy tAL =AY, (A2)
A, +A; = A, (A1) ko1
Kn-1
kn
wherein A, denotes a cluster containingmonomers. The AL +A=AL . (A3)
micellar solution is assumed to be at equilibridsizewise ky

at the start of the observation process. We then select a
monomer molecule bound to a cluster as our tracer and suliccordingly, the master equation governing the probability
sequently follow its evolution as it moves through the sol-P(n) satisfies the equation
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dP(n) ~ space diffusion equation corresponding to the limit of a con-
g~ Kn-1P(n=1)X—ky 4 P(n) tinuous variation of sizes. This continuum limit is obtained
by introducing a paramete®2 denoting the density of the
+k, P(n+1)—kP(n)Xy, (A4)  discrete variablen, followed by an expansion in @. Upon

settingx=n/Q, P(xQ)=p(x) and u(xQ)/kgT=v(x), EQ.
in which X, denotes the concentration of the free monomeriqA9) becomes
species. As a simplification we assume thatis indepen-

dent ofn. This will subsequently be shown to be equivalent dp(X) 1
to the assumption thal(n) in (5) is independent ofi. While at p(x— q SR ) mo(x= 1M} =p(x)
the prescription in Sec. Il is general enough to treat other 1
cases, we nevertheless invoke this assumption so as to focus S _ _
exclusively upon the effect of th&-D processes on the TR{xF Q PO)eXR —[v(Xx+10) ~v ()]}
physical-space macrotransport coefficients. Based on the (A10)
above assumption we obtain
4 The right-hand side of the above equation can be expanded
dP(n) —k- Kn-1 P(n—1)X,— P(n) in a Taylor series ix and the resultant expression simplified.
dt k™ ! For the sake of brevity the details of such an exercise are

omitted here, the ultimate result being

n
n
o . . . —ﬂt —m& &'FD(X)& +Ow (All)
Equilibrium considerations for reactiofs2) and(A3) on
the other hand require that To terms of leading order, the above equation resembles a
N . 0 diffusion equation in the presence of a field of force, which
Kn1 _ XF{ ~ (kn ﬂ“n—fﬂﬂ} can be recast in terms of our original variables as
k™ kgT ’
dP(n) g (aP A pu(n)/kgT]
Ko (pe1— o= 1)) at 5(E+ N } (A12
k—:ex;{— KaT } (A6) . . e .
B The latter is equivalent to the diffusion equation
in which u} denotes the standard-state chemical potential of aP(n) 4
the cluster of sizen. The latter is equal to the free energy 0 %zo (A13)

change occurring when a cluster of sizés introduced into
the pure solvenw‘f represents the comparable standard—statfcf_ Egs.(3) and (7)], wherein the following identifications
chemical potential of the monomgs3]. For the dilute solu- 44 [in Eq. (5)]:

tions assumed, the chemical potentiaj of the monomer

can be expected to obey the ideal solution relation m(n)=k~, V(n)=u(n), d(n)=k™. (Al4)

1= pml+keTINX;. (A7) The relationship between Eq#13) and(3) is such that the

_ N 0 0 0 former may be regarded as a transport equation in size space
Upon using Eq(A7) and writing u1=nu;—(n—1)u; We  for circumstances where the “source ter® J=0, such as
obtain would be the case when the probability dens$ttappearing

krT—lxl :exp{ ) [ (M) = p(n— 1)]} in Egs. (3)—(7) was independent dr.

k™ kgT 3. Model for p@
KX n+1)— u(n This section deals with the identification of the potential
'I’(l: xp{— Lud k) M )]], (A8)  V(n)=pu(n). Experimental observationg33] in spherical
BT micellar solutions indicate the existence of an equilibrium

size distribution characterized by a slight degree of polydis-
persivity centered around a mean aggregation number. Based
on these observations we use the following simple quadratic

_ _ model for the potential:
dP(n)=k[P(n—1)exp{—[M(n) p(n 1)]}_%)

In the aboveu(n)=pur —nu,. Insertion of the above iden-
tification into Eq.(A5) yields

dt kBT V(n) _\7 . (n_F)Z (A15)
n+1)—u(n keT =~ ° 2
+p(n+1)-p(n)exp[—[“( k>T p(n)] ] 5 20
B —_
(A9) where n represents the mean aggregation number and

quantifies the degree of polydispersivity. The numerical

van Kampen’q35] expansion method may be utilized in value of constanf/OZV(F)/kBT proves to be irrelevant un-
the above discrete master equation to derive the aggregatioder subsequent normalization. Furthermore, in the ensuing
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analysisk™ will be set to unity without any loss of general- ner similar to that of the previous sectjoSince a number of
ity. This completes the size-space identifications prerequisitdetails are similar to those of the preceding section, only
to performing explicit calculations of the macrotransport co-essential distinguishing features are outlined here.
efficients.

1. Basic reaction

4. Time scales In contrast to the stepwise association scheme of the pre-

Our coarse-grained quantification of the overall transporceding case, we here assume scission, recombination, and
process can be justified only in circumstances for which thgrowth from micelles of arbitrary sizes. The reaction step is
time scaled characterizing thé-D processes are much less represented by the equation
than those characterizing the physical-space transport pro-

cesses, thereby enabling us to assume an instantaneous size- k" (nin")
space equilibrium distribution despite a comparable lack of AntAn = Aninr. (BY)
equilibrium in physical space. Typical values describing the k™(n+n")

kinetics of the aggregation process involve time scales OL\
microseconds to millisecondgl,32]. On the other hand,
transport in physical space typically involves a diffusion
coefficient of O(10 °cn?/s) [7]. For a dilute solu-
tion (wherein the mean interparticle separation is quite large
one can easily corroborate the assertion that
T (physical-space diffusios T (kinetics).

s in the previous section we consider a solution which is
originally at equilibrium(in size spacewherein we effect

the tracer observation. Furthermore, as in the preceding ex-
ample,k™(n) is assumed to be independentrof

2. Master equation for the tracer

The above reaction scheme for characterizing AR®

5. Transport by mechanism i) process enables us to write a master equatiorP{ar), the
In the above analysis the cluster has been consistent! robability 'ghat thg tre}cer Is present ina cluster contaiming
onomers(including itselj. The reaction pathways under-

assumed to be of a size such that2, with the possibility of by the lust ted by th h
transport as a monomer ignored. The reason for such an a89”e y Ihe tracer cluster are represented by the scheme

proach resides in the fact that a monomer does not satisfy the Hnn')

general form of the master equati¢h4). Under the long- A* 1A, — A* B2)
time limit considered in Sec. lll, the tracer can be expected noom :_ n+n’
to possess a probabilitf, /X;=p of evolving as a mono-
mer, whereXs is the total solute concentration in the solu- K (nn’n’)
tion. Thereby, the normalization conditidt9) needs to be A A, — ’ A* (B3)
modified to the form n-n® oo - ne

fwdn Pi=1-p. (A16) The above reaction sequence yields

1
_dP(n)_ dn’[k P(n+n’)—k*(n;n")P(n)C(n’

However, we ignore the above constraint with the under- —qgr | dn'[k P(n+n)—k7(nin")P(n)C(n")

standing that the macrotransport coefficiegt,sﬁ, etc., as s o N -
calculated in Sec. Ill, need to be corrected for the presence of Tk (n=n"n")P(n=n")C(n")—k"P(n)],
monomer transport by appropriate renormalization, e.g., (B4)

o M (actua) pM (monomef whereinC(n) represents the concentration of clusters of size
M (Sec. IV= - . etc. n in the solution. Equilibrium considerations, however, re-

1-p 1-p (A17) quire that

k*(n;n") (M= M= )
APPENDIX B: SIZE-SPACE DIFFUSION EQUATION K~ =exp — kBT
FOR A WORMLIKE MICELLE (LIVING POLYMER )

. . . . . . 0
Wormlike micelles provide an interesting class of micel- k*(n—n’;n") F{ (pn —,u:_nr—,unr) (B5)
———=exg — ,

lar entities, distinct from the spherical micelles considered in Kk~ kgT
the previous section. Studies of these systems were pio-

neered by Catefsl5,16. Unlike spherical micellar solutions, where the symbolg.* , etc. possess the same meanings as in
which display an equilibrium size distribution peaked aroundappendix A. Furthermore, since the original solution was
a mean aggregation numhey wormlike micelles manifesta assumed to be at equilibrium in size space, the chemical
range of sizes extending over a significant interval. The lattepotentials of clusters of sizagn’ andn+n’ (denoted, re-
scenario provides a natural background to illustrate extremalpectively, asu,,un and w,. ) satisfy the equilibrium
size-distribution effects. Explicitly, this section is concernedcondition corresponding to the reacti¢il), viz.,

with the derivation of the size-space diffusion equation for a

tracer clustefthe labeling of which is carried out in a man- Mnr T 0= Kntn’ (B6)
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where theu,'s are assumed to obey an ideal solution law of This prescription for the standard chemical potentidire-

the form tains the form of the ansatz proposed for the equilibrium
o concentrationC(n), wherein the constank is replaced by
mn=pntkgTINC(N). (B7)  another constant, namely, = a+ 12 . Consequently,
Based upon the above considerations it is straightforward C(n)=Bexp(—a'n), (B12)

to implement an expansion of the above master equation, as _ -~
was done in the preceding section. The resulting equation i¥ith 8 a constant that can be determined from the specified
of the same form as follows from EqA4) [cf. remarks Microscale parameters. Use of the normalization condition
following Eq. (A14) for the correspondence to E@¢3)],  for the total solute concentratidd, namely,

wherein the following identifications hold:

“d =C, B13
m(n)=k™; V(n)=pu(n)=u}— up=ksT INC(n); fo nndn) (B13)

d(n)=k~. Bg) Yields

In addition to a different size distribution from the spherical B =
micellar case we observe another interesting feature of this (a')?
model, namely, the dependence \¢fn) upon the micellar _
concentration of the solution througl(n). It is pertinentto  If we define a mean aggregation numineas
observe that the solution is nevertheless still considered to be "

a dilute, ideal solution, in which hydrodynamic and inter- JodnnC(n)
cluster physicochemical interactions are both completely ne- Jodn C(n)
glected. The manifestation of tl#e D processes through the

concentration dependence of the macrotransport coefficientsen, using Eqs(B8) and (B10)—(B15), we obtain
provides an interesting, unconventional source of nonideal-

i n
ity. V(n)=—=+V,, (B16)
n

C. (B14)

=n, (B15)

3. Equilibrium . . . . .
_ - _ with Vo=V(0) an arbitrary constant which will prove irrel-
Calculation of the transport coefficients necessitates 0bsyant under normalization of the probability.

taining the equilibrium concentration distribution in the mi- 115 completes our identification of the potenti&n) in
cellar solution. Upon invoking the equilibrium condition for orms of the aggregation number This potential is depen-
Eq. (B1) we find that dent upon the single parameﬁr the latter representing the
0 0 i i i i-
k*(n:n')  C(n+n’) [Mnmr—l/«g—/’«nr] mean aggregation numper. In contrast W|t_h the spherical mi
— = —=exp| — cellar solution case, this mean aggregation number can be
k C(mC(n’) keT shown[33] to be proportional to/C [using Eqs.(B14) arg
(B15)]. As such, investigating the effect of the parameter
Based on the latter we make the following ansatz for the®n the transport coefficients is equivalent to investigating the

(B9)

equilibrium concentratiorcf. also Cate$15]): comparable effect of micellar concentration. As already
noted, this concentration effect on the transport coefficients,
C(n)=exp( — ul—an), (810)  even in the dilute limit considered, constitutes an interesting

phenomena with origins in the clustering phenomena taking

wherea is a constant to be determined via the normalizatiorP/ac€ within these systems.

condition imposed upon the concentration. Additionaﬁ)ﬂ,

represents the standard chemical potential of a cluster con- 4. Time scales

sisting ofn monomers. As in the preceding section we need to justfposteriori

~ For wormlike micelles, which are inherently two dimen- the |egitimacy of the coarse-graining process in terms of the
sional, it is conventional to assume a standard chemical p&ime scales involved. Typical values of the kinetic time

tential of the form[33] scales arising in these systems are quoted byeCut. [18],
0 wherein the time scale of recombination and scission was
Mn  ~g A estimated to be of the order of 100 ms. In contrast, the time
F:“wJ’ n’ (B11) scales characterizing physical-space diffusion of these espe-

cially large molecules through dilute systems, such as here
where A is a constant reflecting the energetic interactionsenvisioned, can be expected to be of the order of hours. This

occurring within the cluster, and justifies our assumption that the size-space diffusional pro-
cess can be “projected out,” resulting in a coarse-grained

def. 0 three-dimensional diffusion process that accurately portrays

ul= Iim%. the overall transport phenomena in physical space without

n—o invoking the classical preaveraging assumption.
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